

Deep Energy Retrofit of a Sears Roebuck House: A Home for the Next 100 Years*..... 13 Years Later

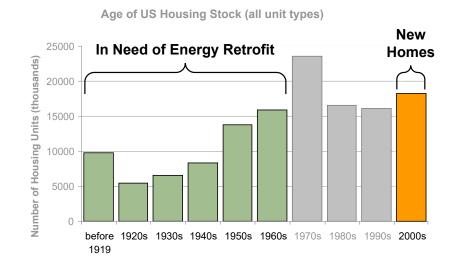
*published by HIGH PERFORMING BUILDINGS Spring 2009

Betsy Pettit, FAIA, President Building Science Corporation betsy@buildingscience.com

Acknowledgements

- All of us- who support building research because we believe in energy security and resource efficiency, and reducing our dependence on fossil fuel use
- The U.S. Department of Energy Energy Efficiency & Renewable Energy who support building research through public/private partnerships and through review and management of specific projects
- **The National Laboratories -** who support research teams, provided research results and have created outreach opportunities to share the research results

National Renewable Energy Laboratory – Ren Anderson, Achilles Karagiozis and many more


Oak Ridge Nation Laboratory - Andre Desjarlais and many more

Pacific Northwest National Laboratory - Cheryn Metzger, Theresa Gilbride, and many more

The Partners and Associates of Building Science Corporation

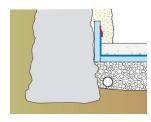
Joseph Lstiburek, Kohta Ueno, and Peter Baker

Deep Energy Retrofits Applied Research

Practices - it is important to follow up on the goals of practical research to see if you met them.

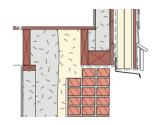
Lessons – what was learned through the original research? What impact did it have? What mistakes were made?

Goals change – how have goals changed since the practical research was completed and what would be done differently today?

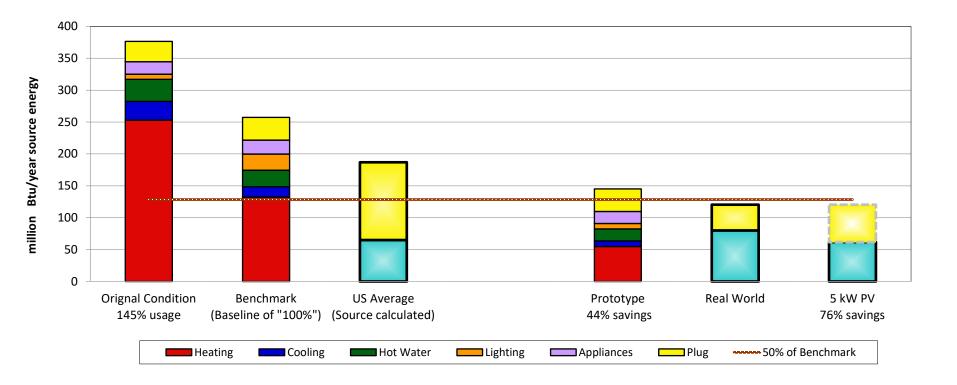

Goals - The Whole Building Approach

Performance Issues driving Retrofit:

- Increasing comfort
- Improving indoor air quality
- •More efficient use of enclosed space
- Improving long term durability
- Reducing operating costs
- Increasing energy efficiency


Deep Energy Retrofits

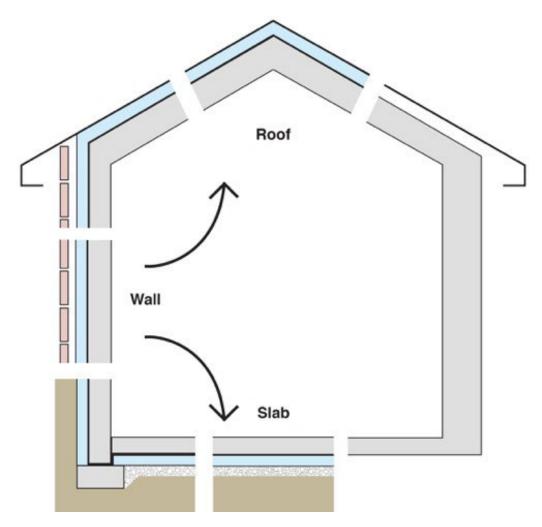
- > 50% reduction in energy use
- Secure buildings future

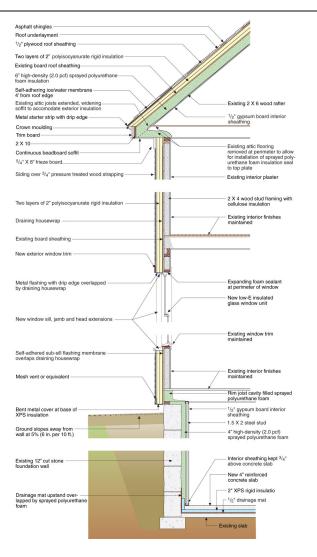


Enclosure Retrofit - Goals

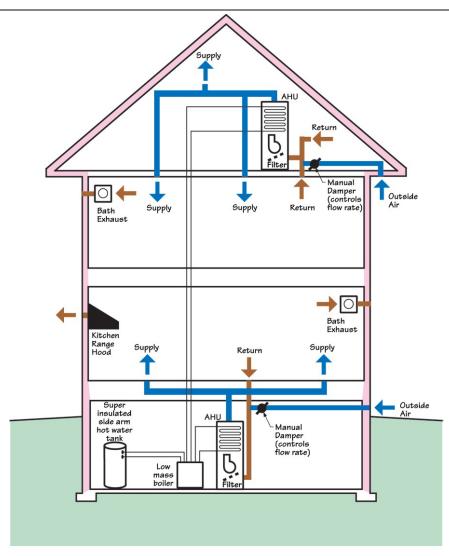
- Airtightness 2 ACH @50 Pascals
- Windows R-2
- Insulation
 - Roof R-60
 - Walls R-40
 - Basement R-20
 - Slabs R-10

Specific Energy Reduction Targets


- To provide a 72% reduction in total energy use with respect to its original energy use.
- To provide a 44% reduction in total energy use with respect to the national average.
- With Photovoltaics, to provide an 76% reduction in total energy use with respect to the national average and to approach **Net Zero Energy**


Foursquare – Concord, MA

The Perfect Enclosure Adapted for Retrofits



Enclosure Upgrades

MEASURE	PRERETROFIT	FINAL
Foundation walls (basement)	Uninsulated 12" cut stone	R-20; 4" high density (2.0 pcf) spray polyurethane foam
Slab insulation	None	R-10; 2" XPS insulating sheathing under slab
Above-grade walls	Some slag wool	R-41: blown cellulose cavity insulation and two layers of 2" polyisocyanurate rigid on the exterior
Siding	Aluminum siding over original shingles	Cedar siding over 3/4" wood strapping (rain-screen cavity)
Band joist areas	No insulation	Cavity filled with spray polyurethane foam
Cathedral ceilings	N/A	Two layers of 2" polyisocyanurate rigid insulation on top of roof sheathing with 6" high density (2.0 pcf) spray polyurethane foam in the existing 2x6 wood rafter
Flat ceilings	10" loose blown slag wool	N/A
Basement windows	Single-pane wood framed	Double-glazed, Low-E, argon- filled: U=33, SHGC=0.32; new window sill, jamb and head extensions, expanding foam sealant at window perimeter
Above-grade windows	Single-pane wood framed with aluminum storm windows	Double-glazed, Low-E, argon- filled: U=33, SHGC=0.32; new window sill, jamb and head extensions, expanding foam sealant at window perimeter
Exterior doors	Solid wood stile and rail	Kept existing front door

Mechanical System Upgrades

Air sealing	None	Retrofitted air barrier: spray polyurethane foam (basement, attic roofdeck, connections between components) and corrugated housewrap at above grade walls. Low expanding foam sealant around windows					
Space heating	Original Oil Fired Boiler Circa 1916	92% AFUE sealed combustion low mass gas boiler in conditioned space					
Cooling	Window air conditioner units	14 SEER split system in conditioned space					
Thermostat	Standard – one zone	Setback – two zones					
Water heating	Naturally-aspirated gas- fired tank water heater (~0.5 EF)	0.8 EF super-insulated sidearm storage tank					
Mechanical ventilation	None	Supply-only system with outside air to return plenum of air handler; run at low speed with an ECM motor					
Spot ventilation	None	Bath exhaust fans; kitchen range exhaust fan					
Lighting	Standard Fixtures	100% Pin-based compact fluorescent lighting					
Refrigerator	Circa 1980	Energy Star					
Dishwasher	Circa 1980	Energy Star					
Clothes washer	N/A	Energy Star					
Infiltration rate	Not tested (estimated ~15 ACH 50)	2.5 sq. in. leakage area per 100 sq. ft. envelope (3 ACH 50)					
Duct leakage (to outside)	N/A (radiator system)	None; ducts located in conditioned space					
HERS Index	150+ (estimated)	49					
Estimated total annual energy use	2680 therms/7300 kWh (estimated)	731 therms/5694 kWh (modeled) 670 therms/3865 kWh (utility bills)					

Water Control Layer Continuity

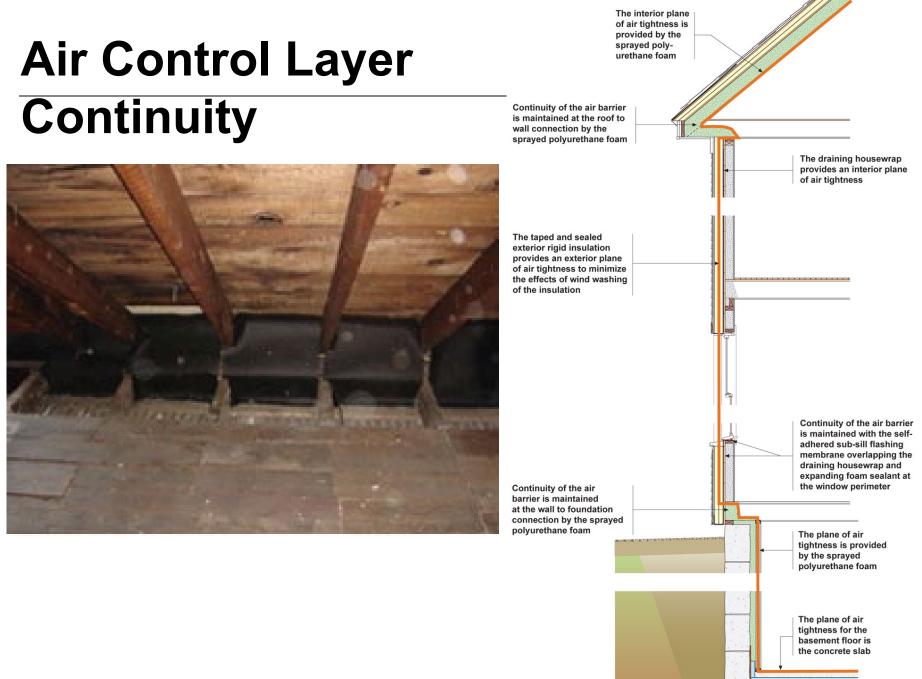
Rain water drains off roof and away from the foundation

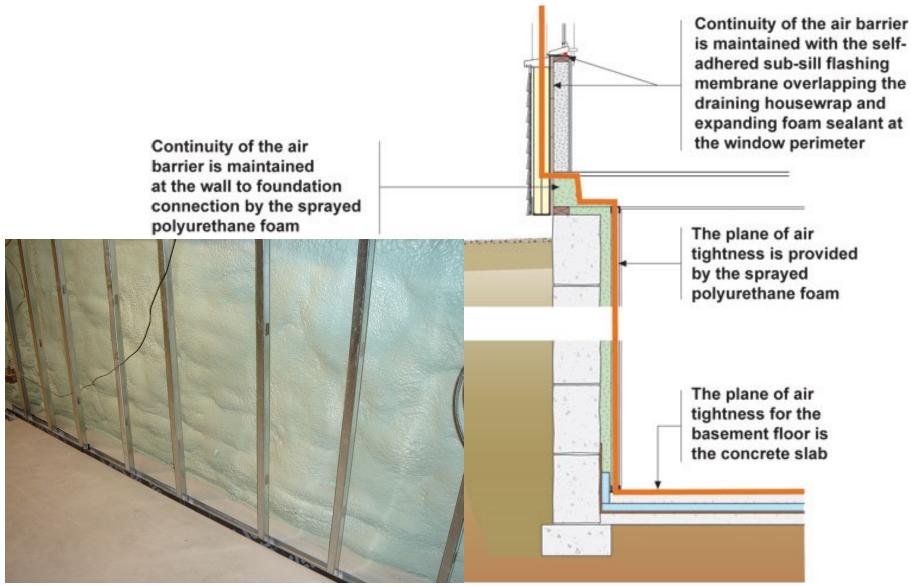
Overhangs protect wall and window assemblies from direct rain water

Rain water drains down over the shingle-lapped siding. Small amounts of water that penetrate past the cladding are drained on the insulating sheathing. Water that penetrates the insulating sheathing is carried down the wall on the draining housewrap.

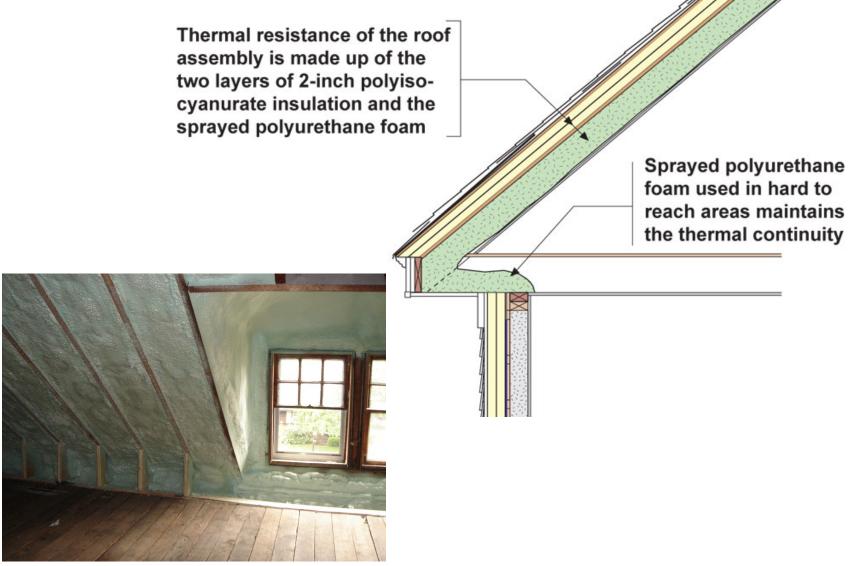
The grade is sloped to drain water away from the foundation (Top layer of the hard packed clay at foundation perimeter limits the amount of rain water absorbed by the ground.)

Water collected in the drainage mat is collected into an interior sump pit and pumped outside if necessary Moisture migrating to interior is directed downward and drains through drainage mat into an interior sump pit and pumped outside if necessary


XPS limits interior moisture migration from the existing slab and soil

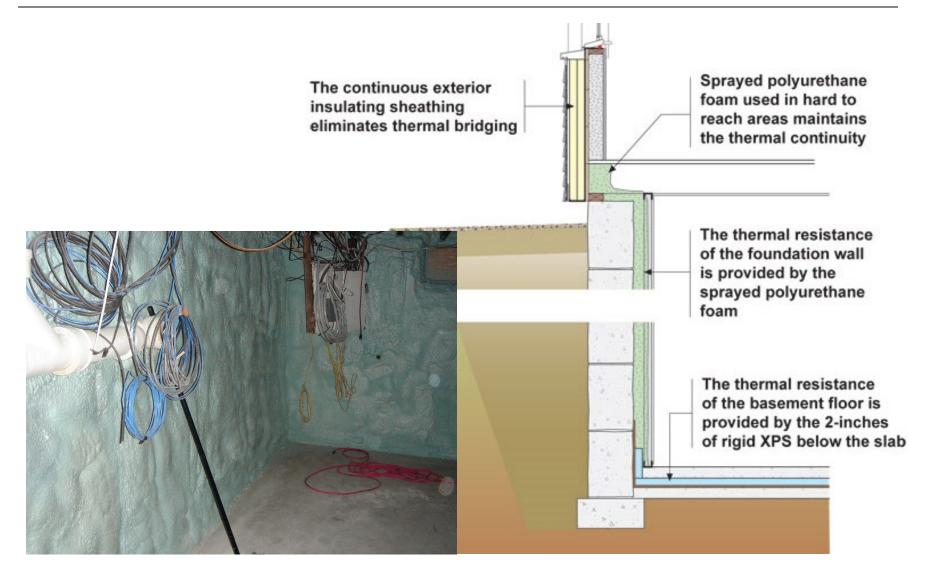

11

Water Control Layer Continuity


S

Air Control Layer Continuity

Thermal Control Layer Continuity



Thermal Control Layer Continuity

New windows with low-E squared glazing maintain the thermal continuity of the wall 16

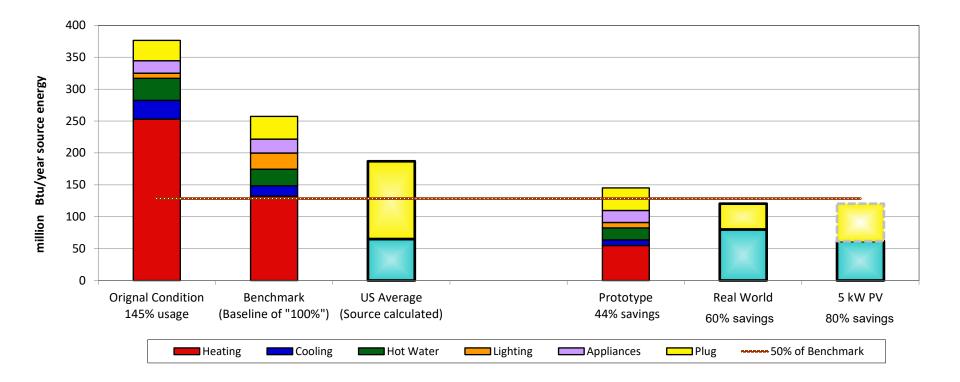
The thermal resistance of the wall assembly is made up of the blown cellulose cavity insulation and the two layers of 2-inch rigid polyisocyanurate insulating sheathing

Thermal Control Layer Continuity

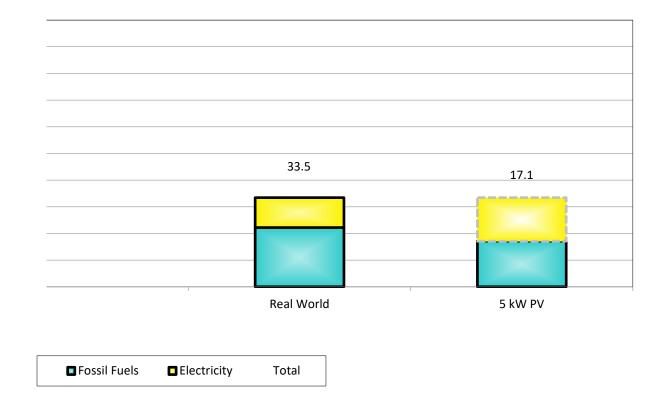
New Windows

Photos courtesy of Dan Morrison, Fine Homebuilding Magazine

New Windows



2010 - 4.9 kW PV System – 28 @ 175w panels with microinverters


Actual Performance

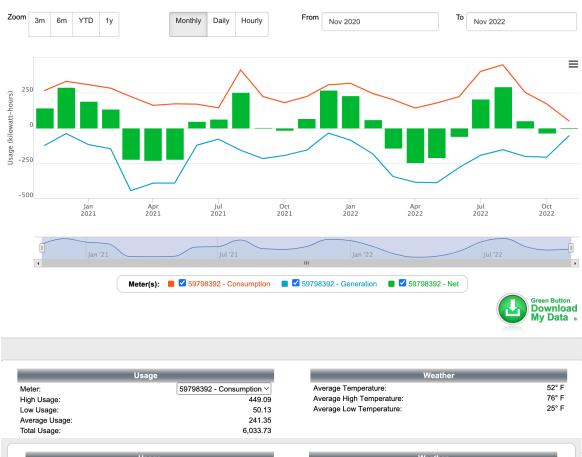
- Without the PV's, the house had a 75% reduction with respect to its original energy use.
- Without the PV's, the house had a 60% reduction with respect to the national average.
- With the PV's, the house had an 80% reduction with respect to the national average.

Metrics

- Total Energy Use is 62 MMBtu's source. National average is 190 MMBtu's source.
- Total conditioned square ft = 3600. kBtu's per sq. ft. before PV's = 33.5
- With the PV's (average collected = 5600 kWh per year) kBtu's per sq. ft. = 17.1

Original Goals Were Met

Airtighness Matters


- Airtighness improved to 1 (one) ACH@50 Pascals by
 - Replacing leaky bulkhead door, leaky front door, leaky back kitchen door
 - fixing connection of porch roof to walls and removing chimney
- An HRV was installed eliminating the need for the central air handler fan to run to bring in outside air

Super insulated assemblies worked

- Roof –Chimney was removed and there was opportunity to see into the roof assembly no damage over time in the assembly
- Windows Three R-5 windows have replaced original replacements in key locations no damage was observed in walls
- Basement a 100 year flood caused the adjacent pond to overflow, flooding the basement – repairs were easy due to steel studs holding gypsum – and closed cell spray foam in walls

Why is the Net Electric Use 450 kWh's?*

* 2020 - 2022 = 910.77/2 =

U	Isage
Meter:	59798392 - Generation ~
High Usage:	-36.73
Low Usage:	-446.13
Average Usage:	-204.92
Total Usage:	-5,122.99

Weather	
Average Temperature:	52° F
Average High Temperature:	76° F
Average Low Temperature:	25° F

	Usage	_
Meter:	59798392 - Net	~
High Usage:		294.39
Low Usage:		-245.07
Average Usage:		00.40
Total Usage:		910.77

Weather	
Average Temperature:	52° F
Average High Temperature:	76° F
Average Low Temperature:	25° F

Micro - Inverter Failure

Over 12 years should have been 73,000 MWh

Pettit, Betsy System	Full System	n -								,	View	Graph	Reports	Devices	s Events	Services	÷	٥
Energy: Custom Range 🔹	Nov 9, 202	22 🔋													54 Microinverte		48°F	
•	Array 1													(Full System	MA verters Not F		-
1.92 kWh	528 Wh	537 Wh	552 Wh	536 Wh	0	564 Wh	570 Wh	592 Wh	©	592 Wh	595 Wh	590 Wh		600 Wh	Today 13.85 Peak: 3.76 kW Latest: 74.00	V at 11:20 AM		
	475 Wh	477 Wh	471 Wh	463 Wh	470 Wh	457 Wh	452 Wh	453 Wh	449 Wh	456 Wh	455 Wh	447 Wh	447 Wh		Past 7 Day 81.93			
0 kWh															Month To I 97.70			
System Energy 13.8 kWh														1	Lifetime 68.96	5 MWh	٦	

Microinverter AC Voltage 246.9 V

No Storage for Excess Production

- First three years average production 5,600 kWh's
- Average electrical use 4,000 kWh's
- Hot Water Use = 170 therms
- Heat = 400 therms
- There could have been enough left over to provide hot water
 - 1,600 excess Btu's per year would cover 1/3 of the hot water use

Impacts Made

Deep Energy Retrofit pilot programs all over U.S.

- National Grid in Massachusetts
- NYSERDA in New York State
- Training for the trades skilled labor required
- Continued Building America research And this conference has at least 20 presentations tied to retrofits
- ABC Collaborative looking at robotics and industrialized production to scale
- Phius REVIVE certification for Energy Retrofits

Goals have changed

- For this house All electric and positive energy
 - Gas range changed to Induction Range
- Next Heat Pump hot water heater with PV inverters fixed and excess capacity over use of 1,600 kWh – use as hot water source as well as storage
- Add PV's will be used to cover heating with storage. Perhaps an additional electric hot water heater with time of use tied to Production.
- And may change again after listening to the great presenters at this conference this week

For More Information Go To:

www.buildingscience.com Search Info and Recent Presentations

Key word: Retrofit