Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow Building Science

The Water Molecule

www.buildingscience.com

Water Molecules

Polar Molecule

Size Matters

Vapor

Moisture Transport in Porous Media

Phase	Transport Process	Driving Potential
Vapor	Diffusion	Vapor Concentration
Adsorbate	Surface Diffusion	Concentration
Liquid	Capillary Flow	Suction Pressure
	Osmosis	Solute Concentration

Moisture Transport in Assemblies

Phase	Transport Process	Driving Potential
Vapor	Diffusion	Vapor Concentration
	Convective Flow	Air Pressure
Adsorbate	Surface Diffusion	Concentration
Liquid	Capillary Flow	Suction Pressure
	Osmosis	Solute Concentration
	Gravitational Flow	Height
	Surface Tension	Surface Energy
	Momentum	Kinetic Energy
	Convective Flow	Air Pressure

Vapor Diffusion Convective Flow

Vapor Concentration Air Pressure

Adsorbate Surface Diffusion

Concentration

Vapor	Diffusion Convective Flow	Vapor Concentration Air Pressure
Adsorbate	Surface Diffusion	Concentration
Liquid	Capillary Flow	Suction Pressure

William Thomson

William Thomson – Lord Kelvin

Kelvin Equation

$$\ln rac{p}{p_0} = rac{2 \gamma V_{
m m}}{r R T}$$

Calculating capillary rise

Capillary rise versus diameter

Figure 1c. Gypsum, hydrated from plaster of paris and water, porosity 30 per cent.

Figure 1b. Brick, sintered clay, porosity 40 per cent.

Siding Laps

Really Heavy Pink Stuff

Liquid Waterproofing over Concrete Deck

Building Science Corporation

Joseph Lstiburek 40

Vapor	Diffusion Convective Flow	Vapor Concentration Air Pressure
Adsorbate	Surface Diffusion	Concentration
Liquid	Capillary Flow Osmosis	Suction Pressure Solute Concentration

Capillarity + Salt = Osmosis

- Mineral salts carried in solution by capillary water
- When water evaporates from a surface the salts left behind form crystals in process called efflorescence
- When water evaporated beneath a surface the salts crystallize within the pore structure of the material in called subefflorescence
- The salt crystallization causes expansive forces that can exceed the cohesive strength of the material leading to spalling

Pressures

- Diffusion Vapor Pressure
- Capillary Pressure
- Osmosis Pressure

3 to 5 psi 300 to 500 psi 3,000 to 5,000 psi

Freeze-Thaw Damage

Freeze-Thaw Damage Freezing Temperatures Water Susceptible Brick

More Osmosis

Need To Do An Aside...Necessary For A Segway

Relative Humidity Vapor Pressure

Sorption

Sorption isotherm for several building materials [Kumaran 2002] From Straube & Burnett, 2005

BET Theory

BET Theory Stephen Brunauer Paul Emmett Edward Teller

Typical predicted sorption isotherm according to Kelvin equation and modified BET theory

From Straube & Burnett, 2005

Change in the storage of moisture in a porous building material as the partial pressure of water vapor in the ambient air increases from zero to full saturation value at a given temperature.

Sorption Curve From M.K. Kumaran, ASTM MNL 18-2nd Edition, Moisture Control in Buildings, 2009

Regimes of moisture storage in a hygroscopic porous material From Straube & Burnett, 2005

Adapted from Joy & Wilson, 1963

Water Vapor Permeance vs. Relative Humidity

Building Science Corporation

Building Science Corporation

Water Vapor Permeance of Sheathing Materials

Joseph Lstiburek – Rain Control 83

Building Science Corporation

Joseph Lstiburek – Rain Control 84

Average sorption isotherm for wood as a function of temperature From Straube & Burnett, 2005

Moisture Content vs. Relative Humidity

Water Vapor Permeance of WRB's

Laws of Thermodynamics

Zeroth Law – Equal Systems First Law - Conservation of Energy Second Law - Entropy Third Law – Absolute Zero

2nd Law of Thermodynamics

In an isolated system, a process can occur only if it increases the total entropy of the system

Rudolf Clausius

Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less

Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less

Thermal Gradient – Thermal Diffusion Concentration Gradient – Molecular Diffusion Moisture Flow Is From Warm To Cold Moisture Flow Is From More To Less

Thermal Gradient – Thermal Diffusion Concentration Gradient – Molecular Diffusion

Vapor Diffusion

Thermodynamic Potential

Vapor Diffusion Convective Flow

Vapor Concentration Air Pressure

Higher Dewpoint Temperature Higher Water Vapor Density or Concentration (Higher Vapor Pressure) on Warm Side of Assembly Low Dewpoint Temperature Lower Water Vapor Density or Concentration (Lower Vapor Pressure) on Cold Side of Assembly

How Does Wetting Occur?

- "non-wetable" surface
- water repellant surface
- hygrophobic surface
- water more attracted to itself than to surface
- surface energy of water greater than surface energy of surface
- water "beads up"
- "greasy" surface
- high contact angle "θ"

- "wetable" surface
- non-water repellant surface
- hygroscobic surface
- water more attracted to surface than itself
- surface energy of surface greater than surface energy of water
- water "spreads out"
- "non-greasy" surface
- low contact angle " θ "

Fabric Int'l d Moisture Barrier Pesistant eport No . NER – 655

Water (20 C) Water (100 C) Epoxy Polyethylene Soapy water Paraffin wax Silicone Teflon

Surface Energy 73 dynes/cm 59 dynes/cm 46 dynes/cm 31 dynes/cm 30 dynes/cm 25 dynes/cm 24 dynes/cm 18 dynes/cm

When Phases Change

Simple linearized energy-temperature relation for water From Straube & Burnett, 2005

Figure 8-7. Outside vapour pressure, saturated vapour pressure and inside vapour pressure for Winnipeg.

The Best For The Last....

Pascals		mph	
50	Pa =	20	mph
100	Pa =	30	mph
150	Pa =	35	mph
250	Pa =	45	mph
500	Pa =	65	mph
1,000	Pa =	90	mph

Wind Speed (mph) vs. Stagnation Pressure (Pa)

Rain Screen

Beer Screen?

