

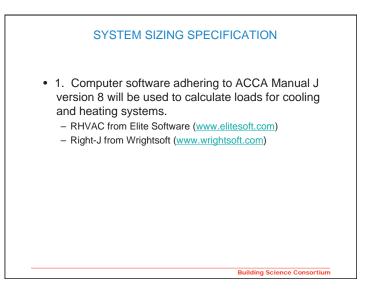
SYSTEM ENGINEERING TRADE-OFFS

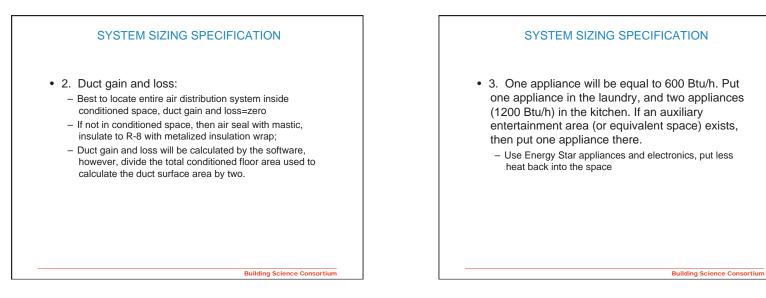
• Better Envelopes

- Allow for reduced cooling system size
- Decrease energy consumption
- Increase occupant comfort
- Make overall performance more predictable
- Improve the more permanent features of a home which has longer-term sustainability benefits to society

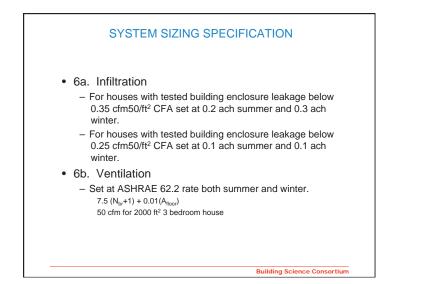
Building Science Consortium

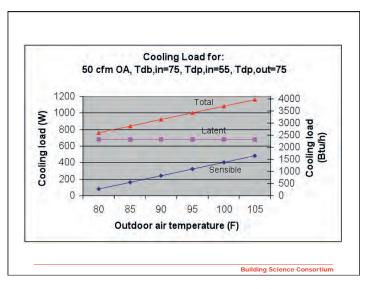
SYSTEM ENGINEERING TRADE-OFFS


• More efficient systems


- Are most cost effective when the load is high
 - this is in circular conflict with our premise to first reduce loads
 through improved envelopes
- High efficiency cooling systems generally have a higher evaporator coil temperature which reduces moisture removal
- some of this can be altered with effective control of ECM air handlers

Building Science Consortium



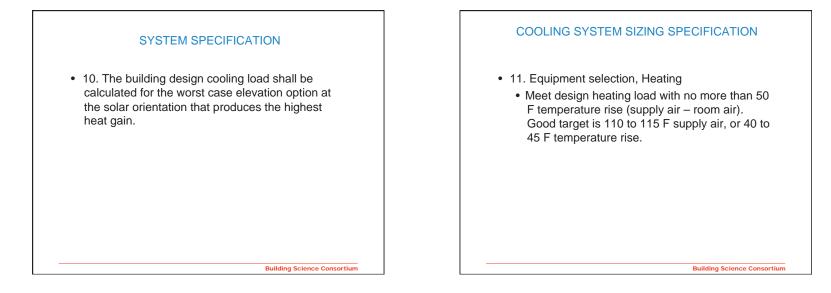

Transfer grille height required for listed width in inches Jump Duct Diameter 10 12 14 Room supply cfm (in) (in) (in) <=100 6 6 4 8 >100 and <=125 8 6 6 8 >125 and <=150 10 8 8 10 >150 and <=175 12 10 8 10 >175 and <=225 14 12 10 12	R	oom Tra	ansfer	Air							
10 12 14 (in) (in) (in) (in) <=100 6 6 4 8 >100 and <=125 8 6 6 8 >125 and <=150 10 8 8 10 >150 and <=175 12 10 8 10		Trans	sfer grille height re	equired	Jump Duct						
Room supply cfm (in) (in) (in) (in) <=100			for listed width in inches								
<pre><=100 6 6 4 8 >100 and <=125 8 6 6 8 >125 and <=150 10 8 8 10 >150 and <=175 12 10 8 10</pre>											
>100 and <=125 8 6 6 8 >125 and <=150 10 8 8 10 >150 and <=175 12 10 8 10	Room supply cfm	(in)	(in)	(in)	(in)						
>100 and <=125 8 6 6 8 >125 and <=150 10 8 8 10 >150 and <=175 12 10 8 10	<=100	6	6	4	8						
>125 and <=150 10 8 8 10 >150 and <=175 12 10 8 10											
	>125 and <=150	10			10						
>175 and <=225 14 12 10 12	>150 and <=175	12	10	8	10						
	>175 and <=225	14	12	10	12						
Building Science Consortium											

SYSTEM SIZING SPECIFICATION

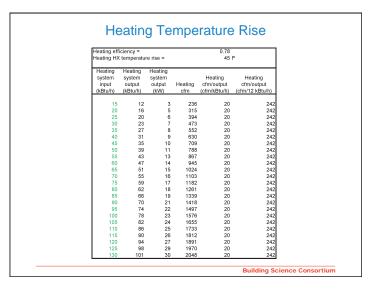
• 7. Glazing U-value and SHGC must be entered according to the NFRC label for the exact glass being installed (get written confirmation from the purchasing manager).

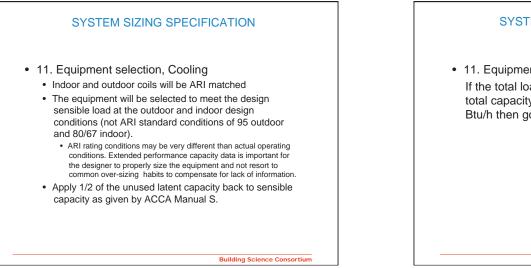
U-value and SHGC of less than 0.35 is good

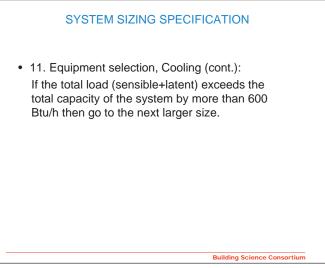
Interior shading will be selected as: Drapes-medium, 50% drawn, no insect or external shade screens, ground reflectance equal to 0.20 except ground reflectance equal to 0.32 for glass adjacent to concrete areas such as a patio.

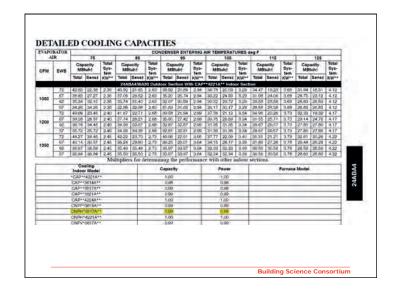

Exception: French doors, entry door side glass, and multi-story open-space windows such as used in foyers (not including transom windows) shall have "None" as internal and external shade. Bathroom windows shall have obscured or block glass.

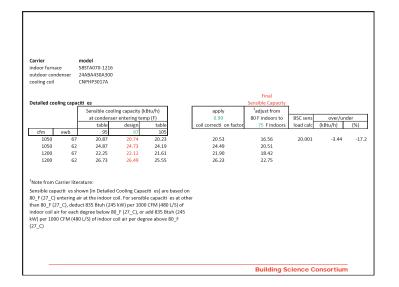
Building Science Consortium


SYSTEM SIZING SPECIFICATION


- 8. Outdoor design conditions:
 - Heating: set at the Manual J standard value for the closest climate
 - Cooling: set at the ASHRAE 0.4% design for cooling. Indoor cooling design conditions will be set at 75 F drybulb and 63 F wetbulb (50% RH).


Building Science Consortium


eating setpoin	nt =	70 F	-]
	Heating	Heating	Heating	Heating	-
leating HX	supply air	cfm per	cfm per	cfm per	
temp rise (F)	temp (F)	kW output	kBtu/h output	12 kBtu/h output	
14	84	222	65	779	
16	86	194	57	682	
18	88	172	51	606	
20	90	155	45	545	
22	92	141	41	496	
24	94	129	38	455	
26	96	119	35	420	
28	98	111	32	390	
30	100	103	30	364	EGUSA uses 360 cfm/12 kBtu/h, this would be for a heat pump
32	102	97	28	341	
34	104	91	27	321	
36	106	86	25	303	
38 40	108 110	82 78	24 23	287 273	
40	110	78	23	2/3	
42	112	74	22	260	! Modern gas furnace
44	114	67	20	248	: Modelli gas fulliave
48	118	65	19	227	
50	120	62	18	218	
52	122	60	17	210	
54	124	57	17	202	
56	126	55	16	195	Old scorched air furnaces
58	128	53	16	188	
60	130	52	15	182	



AIR DELIVERY-CFM (With Filter)*															
an andal	RETURN-AIR	1	EXTERNAL STATIC PRESSURE (In. wc)												
UNIT SIZE	SUPPLY	SPEED	0.1	0.2	0.3	0.4	9.5	0.6	0.7	0.0	0.9	1.0			
045-08	Bottom or Side(s)	High Med-High Med-Low	1085 920 820	1035 875 775	075- 830 730	915 770 680	845- 710- 620	770 640 555	675- 555 470	565 440 360	390 250 190	195			
845-12	Bottom or Side(s)	High Med-High Med-Low	1450 1360 1250	1375 1300 1210	1305 1240 1160	1225 1175 1100	1145 1115 1040	1050 1040 965	705 725 670	510 571 520					
070-08	Bottom Dr Side(s)	High Med-High Med-Low	000t 835 725	1810 815 700	980 790 675	845 675 555	775 610 475	690 490 390	490 375 300	395					
070-12	Bottom of Side(u)	High Med-High Med-Low	1425 1320 1200	1375 1280 1175	1320 1240 1145	1265 1205 1105	1200 1140 1050	1125 1075 990	1095. 995 920	940 905 840	830 790 725	655 62% 5.55			
070-16	Bottom or Side(s)	High Med-High Med-Low	1805 1630 1460	1740 1585 1420	1670 1530 1385	1600 1470 1325	1530 1405 1280	1445 1330 1220	1380 1255 1155	1280 1170 1080	1180 1080 905	107 990 910			
000-14	Bottom or Side(s)	High Med-High Med-Low	1650 1515 1385	1800 1485 1360	1535 1440 1320	1465 1380 1260	1385 1300 1195	1285 1220 1120	1175 1115 1025	1055 090 915	895 830 710	641 601 561			
050-30	Bottom Of Side(s)	High Med-High Med-Low	2060 1790 1505	1985 1765 1505	1916 1715 1480	1820 1545 1440	1720 1560 1375	1610 1470 1300	1490 1345 1190	1340 1195 1045	1135 1010 800	929 820 740			
000-20	Bottom Only	High Med-High Med-Low	2405 2225 2020	2310 2155 1955	2220- 2080- 1880	2130 1995 1806	2025 1895 1730	1920 1785 1630	1790 1675 1535	1850 1565 1420	1530 1420 1275	135 126 113			
	Both Sides or 1 Side & Bottom	High Med-High Med-Low	2530 2285 1995	2450 2215 1945	2365 2150 1900	2270 2075 1840	2165 1985 1770	2065 1890 1665	1940 1780 1600	1805 1860 1480	1670 1525 1350	150 136 118			
	1 Side Only	High Med-High	2475 2280	2305 2190 1010	2300 2110 1955	2200 2035	2090 1940	1985	1865 1735	1730 1620	1586 1475	142			

24ABA4 CHARGING SUBCOOLII		
UNIT SIZESERIES		DLING (F)
1830	10 11	
2430		
3030	8	
3630	10	
4230	12	
4830 6030	9	
0030	Э	

						Ta	able	2: T	arge	et Te	mpe	eratu	ure S	Split	(Ret	urn	Dry-	Bult	o – S	upp	ly D	ry-B	ulb)					
	Return Air Wet-Bulb (°F) (T return, wb)															-												
		50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
	70		20.7	20.6		20.1	19.9		19.1		18.2	17.7	17.2			15.2			12.8		11.0		9.0	7.9	6.8	5.7	4.5	3.2
(T return,	71	21.4	21.3	21.1	20.9	20.7	20.4	20.1	19.7	19.3	18.8	18.3	17.7	17.1	16.4	15.7	15.0	14.2	13.4	12.5	11.5	10.6	9.5	8.5	7.4	6.2	5.0	3.8
Ę.	72	21.9	21.8	21.7	21.5	21.2	20.9	20.6	20.2	19.8	19.3	18.8	18.2	17.6	17.0	16.3	15.5	14.7	13.9	13.0	12.1	11.1	10.1	9.0	7.9	6.8	5.6	4.3
jE.	73													18.2												7.3	6.1	4.8
	74													18.7										10.1		7.8	6.6	5.4
<u>و</u>	75	23.6	23.5	23.3	23.1									19.3					15.5	14.7	13.7	12.7	11.7	10.7	9.5	8.4	7.2	5.9
8.	76		24.0		23.7									19.8					16.1		14.3			11.2	10.1	8.9	7.7	6.5
ΠΦ ĺ	बु 77		24.6	24.4										20.4											10.6	9.5	8.3	7.0
μŻ	78		-	-	24.7	24.5								20.9													8.8	7.6
é	79		-	-	-	-	24.8							21.4													9.4	8.1
	80		-	-	-	-	•	25.0				23.2		22.0							16.4			13.4	12.3	11.1	9.9	8.7 9.2
Ξ	81		-	-	-	-			25.1		24.2	23.7	23.1	22.5 23.1	21.9	21.2			18.8	17.9	17.0	16.0	15.0	13.9	12.8	11.7	10.4	0.16
Return Air Dry–Bulb (°F)	82		-		-				-	20.2				23.1 23.6														
۳ ۳	84									1				24.2														
	04										20.0	20.0	24.0	24.2	20.0	22.0		urce										
																							,			-,-		
																			Bui	ldin	g So	ien	ce (Cons	sort	ium		