High Performance Enclosures

Dr John Straube, P.Eng. University of Waterloo Building Science Corporation

www.BuildingScience.com

Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commerical and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption of Canadian Commercial and Institutional Buildings | Actual Energy Consumption Consumption

Goal

- "provide Canadian Architects with the knowledge and new design solutions required to design energy-efficient building enclosures (roofs, walls, foundations, windows and doors) appropriate for net-zero energy buildings."
- This means 70-90% reductions in energy use
- Perhaps half of this can be achieved by enclosure, half by mechanicals

www.BuildingScience.com

Enclosures in Context

- Enclosures reduce space heating/cooling
 and help with lighting, ventilation
- We still need energy for other things
 Lights, appliances, computers, elevators, etc
- Only sensible to provide some HVAC
- Hence, good mechanicals and renewables will also be needed for net zero
- Great enclosures reduce demand and hrs of operation

Top Ten List

Commercial and institutional mid-size buildings, Canadian climates

- Limit window-to-wall ratio (WWR) to the range of 20-40%, 50% with ultraperformance windows
- Increase window performance (lowest U-value affordable in cold climates, including frame effects)
- Increase wall/roof insulation (esp. by controlling thermal bridging) and airtighten
- Separate ventilation air supply from heating and cooling.
- · Use occupancy and daylighting controls for lights and equipment
- · Reduce equipment/plug & lighting power densities
- Don't over ventilate, use heat recovery & demand controlled ventilation
- Improve boiler and chiller efficiency & recover waste heat (eg IT rooms!)
- Use variable speed controls for all large pumps and fans and implement low temperature hydronic heating and cooling where appropriate.
- Use a simple and compact building form, oriented to the sun, with a depth that allows daylight harvesting.

 work Building Science.com

Buildings: Why do we Build?

- To keep the wind, sun, rain, snow, heat, cold, dust, bugs, animals, and nasty people outside.
- But we let in some things
 - clean water, supplies
- And let some things out

• The part of the building that physically separates the interior and exterior environments.

What is outside like where are you building?

Climate Zone

Subarctic/Arctic

- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science 2008

Enclosures No. 12 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Expanded Plans Better daylight, easier ventilation but more enclosure heat loss and gain and air leaks

Enclosure Intro Summary

- Enclosure often defines the H/C load
 - Architecture defines massing, orientation, enclosure
- Enclosure more critical for skin-dominated
 - Heat flow, Solar control, air tightness
- Lighting, ventilation critical for deep plan

Building Science

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people

Distribution – a building function

Functional Layers

Building Science

Basic Enclosure Functions

- Support
 - Resist & transfer physical forces from inside and out
 - · Lateral (wind, earthquake)
 - · Gravity (snow, dead, use)
 - · Rheological (shrink, swell)
 - Impact, wear, abrasion
- Control
 - Control mass and energy flows
- Finish

 Interior and exterior surfaces for people **Building Science** Enclosures No. 29 /

Basic Enclosure Functions Support - Resist & transfer physical forces from inside and out Control - Control mass and energy flows **Functional Layers** • Rain (and soil moisture) - Drainage plane, capillary break, etc. Air Continuous air barrier Heat - Continuous layer of insulation Balance of wetting/drying

Building Science.com

Finish

Enclosures No. 30 /

- Interior and exterior surfaces for people

History of Control Functions • Older Buildings - One layer does everything • Newer Building - Separate layers, ... separate functions

What is a high performance enclosure?

- One which provides high levels of control
- Poor continuity limits performance
- Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- This course: continuity + high levels

www.BuildingScience.com

9 of 33

Rain Control

- Next to structure, the most important, fundamental requirement
- Source of many serious building problems
- · Major impact on durability
- · Low-energy buildings & rain
 - Different enclosure assemblies
 - Reduced drying ability

16 of 33

17 of 33

Air-Water-Vapor

- Often thin layers
- Can be
 - Water control (vapor permeable, not airtight)
 - Air & water control (vapor permeable)
 - Air, water & vapor (vapor impermeable)
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

www.BuildingScience.com

Air-Water Control Layers

Air Flow Control

www.buildingscience.com

Air Barrier Systems

- Need an excellent air barrier in all buildings
 - Comfort & health
 - Moisture / condensation
 - Energy
 - Sound, fire, etc.
- Cant make it too tight.
- Multiple air barriers improve redundancy

www.BuildingScience.com

Air moves more than diffusion! Diffusion is rarely a big deal Air leakage almost always is! Wall 1 'Vapor diffusion only Class II vapor control Class II vapor control Exterior T = 0°F / -18°C RH = 80% Exterior T = 0°F / -18°C RH = 80% Linerior T = 0°F / 21°C RH = 35% 1 in² opening 10 Pa pressure

Air leakage

- Hard to save energy with the door open
- Buildings getting tighter, but . . .
 - Many still leak way too much
 - We can't identify the leakers
 - Need to test! Commission!
- Ventilation: Many try to improve air quality by increasing quantity
 - Target good air when and where needed

11/1/10

Air Barriers and Energy

- Requirements
 - Continuous (most important)
 - Strong
 - Stiff,
 - Durable,
 - Air Impermeable (least important)
- Easily 1/3 of total heat loss is due to air leakage in well-insulated building

84/175

11/1/10

Thermal Control

- Insulation
 - Slows heat flow in and out
- Windows
 - Slow heat flow in and out
 - Control solar gain : allow or reject?
- "cool" roofs
 - Reduce solar gain
- Radiant barriers

Thermal Insulation

Insulation	R-value/inch	k (W/mK)
Empty airspace 0.75"-1.5" (20-40 mm)	R2.0 - 2.75	0.36 -0.50 W/m ² K
Empty airspace 3.5"-5.5" (90-140 mm)	R2.75	$0.50~\mathrm{W/m^2K}$
Batt (mineral fiber)	3.5-3.8	0.034 - 0.042
Extruded polystyrene (XPS)	5.0	0.029
Polyisocyanurate (PIC)	6.0-6.5	0.022 - 0.024
Expanded polystyrene (EPS)	3.6-4.2	0.034 - 0.040
Semi-rigid mineral fiber (MFI)	3.6-4.2	0.034 - 0.040
Spray fiberglass	3.7-4.0	0.034 - 0.038
Closed-cell spray foam (2 pcf) ccSPF	5.8-6.6	0.022 - 0.025
Open-cell spray foam (0.5 pcf) ocSPF	3.6	0.040
Aerogel	8-12	0.012-0.018
Vacuum Insulated Panels (VIP)	20-35	0.004-0.008

How much Insulation

- Heat Flow = $\frac{\text{Area * (T_{inside} T_{outside})}}{\text{R-value}}$
- Double R-value, halve heat flow. Always.
- Optimum depends on
 - · Cost of energy over life of building
 - Cost of adding more insulation
 - Savings in mechanical equipment, controls

www.BuildingScience.com

Thermal Continuity

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few
- Major offenders / weak spots
 - Penetrating slabs (<R1)
 - Steel studs (<R1)
 - Windows (R2-R3)
- Area and low R matter to overall significance

Thermal Bridge Examples

Balconies, etcExposed slab edges

Windows

- Our most expensive thermal bridges
- Aluminum is 4-5 times as conductive as aluminum
- Difficult to buy commercial aluminum windows / curtainwall over R3.
- Allow solar heat in
 - Useful in cold weather
 - Requires cooling in summer

Solar Gain

- Measured by SHGC
- Solar gain useful during cold sunny weather
- But least heating is needed during daytime for commercial buildings
- Overheating discomfort is a real risk
- Must size glass Area x SHGC carefully
 - High values = air conditioning and discomfort

www.BuildingScience.com

Interior or Exterior Shade

- Operable Solar Control of windows may be necessary for ultra-low energy buildings
- Exterior Shades always beat low SHGC glazing
 - But the cost capital and maintenance
- Interior shades don't work well with good windows

Summary

- Indentify functional control layers
 - Rain, air, heat, vapor
- Provide continuity of control layers
 - details
- Select high levels of performance

Structural Insulated Panels

- Advantages
 - Superior blanket of insulation
 - if no voids then no convection or windwashing
 - May seal OSB joints for excellent air barrier system
- Therefore, done right = excellent
- Small air leaks at joints in roofs can cause problems
- Don't get them too wet from rain
 - Low perm layers means limited drying
 - Always use drained / ventilated cladding! Stucco!

Building Science.com

Details

- Integration of penetrations and transitions is critical
 - Must maintain continuity of rain, air, thermal and vapor control through the transition!
 - Exposure and performance expectations guide designers level of compromise

www.BuildingScience.com

Low-Slope Roofs

- Not flat. Ponding is not acceptable.
- Get water right, then worry about energy!
- Components
 - Rain barrier is roof membrane
 - Drainage gap is the outdoors
 - Air barrier can be roof membrane
 - Better to install interior
 - Insulation is rigid, polyiso, XPS, EPS, rockwool

Building Science.com

Unvented Cathedralized Attics

- Move air and insulation control from ceiling plane to roof plane
- Moves HVAC into conditioned space
 - Saves lots of energy, reduce problems with comfort, extends life of equipment
- Avoids wind blown rain, snow, and burning wildfire embers

Building Science 2008

