Well Ventilated Buildings and Ventilation Systems

© 2005 Building Science Corporation

PR-0510e: Well Ventilated Buildings and Ventilation Systems

A Well-Ventilated Building Provides:

- Local Ventilation to remove moisture, odors, and other pollutants at the source
- Whole House Ventilation for supplying fresh air to remove contaminants by dilution
- Control of airflow through building so crazy air flows can't carry contaminants into and around the house

© 2005 Building Science Corporation

What powers air flow?

Air Flow

- Air flow depends on size of hole
- Air flow depends on pressure difference Flow \cong Area x $\sqrt{\Delta P}$ x Coefficient
- Air flows from higher pressure to lower pressure

4

Figure 3.1 Exterior Air Pressure Field (from Hutcheon & Handegord, 1983)

> Distribution of pressures (+) and suctions (-) on a house with a low-sloped roof with wind perpendicular to eave

Figure 3.2 Exterior Air Pressure Field Extending Below Grade

It's 73 degrees out - how much air change occurs ?

Purposes of Mechanical Ventilation

Point-source ventilation - Remove Pollutants

•exhaust fans: kitchen, bath, laundry, trash rooms

Whole-building ventilation - Dilute Pollutants

•supply, exhaust, or balanced fans distributing to all rooms

Standards and Codes?

• State and Local codes

• IRC, IMC 2003

- 4 ft2window/100ft2 or 0.35 ach (not less than 15 cfm/person) mechanical
- Bath 1.5 ft2 window(1/2operable) or 50 intermittent or 20 cfm continuous exhaust
- Kitchens 100 intermittent, 25cfm continuous
- Dryer must exhaust

• ASHRAE 62.2P 2003

- 7.5 cfm/person+1cfm/100sq.ft. fan powered (<4500 infiltration degree day exclusion)
- Exhaust: Intermittent 100cfm kitchen, 50 cfm bath, or continuous 5 ach kitchen , 20 cfm bath
- Dryer must exhaust; range hood required if flow less than 5 ach
- Some noise and installation requirements

According to ASHRAE 62.2

- The same amount everywhere, every climate
- Big houses need more air than smaller houses
- Selecting materials does not affect the rates under current thinking
 - This will change as we learn more in the future
- We assume the enclosure are equally leaky everywhere regardless of age

Local Ventilation (Things That Need Exhaust Ventilation)

Bathrooms

- Clothes dryers
- Kitchen ranges
- Boilers, furnaces, gas-fired hot water heaters
- Fireplaces, wood burning stoves

Dealing With Specific Pollutant Sources

- Provide exhaust fans at pollutant generation location that can be run when required
 - Example Bathroom Fan
 - Kitchen exhaust hood
 - Fan in Trash room
- These fans have off-on switches and/or timers

Exhausts in bathrooms? Does it work?

Testing Exhaust Fan: The Charmin Method

Testing Exhaust Fan: Flow Pan Method

New installation (above)

Retrofit bath fan (right)

Local Ventilation: Kitchen

- Remove moisture, odors, grease
- If gas oven or range, remove products of combustion: moisture, CO, NOx
- Must be vented to the outside
- If it's not reasonably QUIET, many people won't use it.

Some things on the exterior match-up with things on the interior

Local Ventilation: Combustion Appliances

- Make sure all combustion appliances have adequate combustion and dilution air per manufacturers specs and code.
- Make sure gas ranges and ovens are exhausted to outside, even if manufacturer and code permit otherwise.
- Avoid negative (sucking) pressures in spaces with combustion appliances

© 2005 Building Science Corporation

Whole House Ventilation - Options

Requires Airtight building envelope and ducts

Exhaust ventilation

• single- or multi-point

Supply ventilation

- single- or multi-point
- integrated with central system fan

Balanced ventilation

- single- or multi-point
- integrated with central system fan
- with or without heat or energy recovery

In order to control the air, you must first enclose the air

- An enclosure is constructed
- This enclosure provides closure for all six sides of the cube
- Openings in the enclosure should be intentional
 - Doors, Windows, Exhaust vents, Outside Air Intake

Staggering rooms or using wing walls increases ventilation through rooms oriented north to south

Air brought into the the home can then be.....

- Heated
- Cooled
- Humidified
- Dehumidified
- Cleaned, Filtered
- Distributed, Mixed

• Energy is spent in the process

Bringing in Outside Air Can Be Expensive in Terms of Energy

- We do not want to bring in more than we need
- If we build a perfectly tight enclosure and eliminate uncontrolled air leakage,the above is possible

Bringing in Humid Air Can Be a Problem

• Humidity is not a pollutant-but can create one

- It takes energy to dry air
- This energy used to come from building inefficient enclosures and using inefficient equipment
- Now with good glass, good insulation, good lights, good appliances, we don't have enough heat available to run the A/C to dehumidify

•Continuously operating exhaust with central fan recycling for distribution and mixing (sealed combustion space/DHW heating)

Exhaust Only

Exhaust Only

Inline fan ventilating house by drawing air from kitchen and 2 baths

Supply Only

- Can bring in outside air, mix it with inside air to temper it, and distribute it around the house.
- Can include filtration and/or dehumidification
- Moderate cost

Fan Recycling Application

- Activates the central system fan for a selectable ON time if it has been inactive for a selectable OFF time
 - Improved comfort control by periodic mixing
 - Improved indoor air quality by periodic full distribution of ventilation air

Non-Integrated Supply

© 2005 Building Science Corporation

•Continuously operating supply with central fan recycling for distribution and mixing

•Limitations: Forgiving envelope, low interior RH

Supply Only

© 2005 Building Science Corporation

Balanced heat
recovery ventilation
with central fan
recycling for distribution
and mixing or

•Fully-ducted multipoint HRV system

Balanced Cold Climates

© 2005 Building Science Corporation