Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Building Technologies Program

Affordable Housing

Betsy Pettit, AIA Building Science Corporation

www.buildingscience.com

Bringing you a prosperous future where energy is clean, abundant, reliable, and afford Building Technologies Program

Why Zero Energy Homes?

• They allow our long term existence in otherwise un-inhabitable or uncomfortable environments

What makes an affordable home?

- Someone who makes the median income in the area can afford to
 - Purchase
 - Operate building
 - Maintain
- Long Term Durability

Maintain shelter to current high standards in hostile environments without stored energy consumption?

- No oil, gas, or 'net" off-site electricity use?
 - Aggressive conservation methods com
 - More site generated energy

Site Energy Consumption = Site Energy Collection

Insuring Affordability © buildingscience.com

- Comfort of occupants
- Indoor air quality
- Energy efficiency
- Durability

© buildingscience.com

 Leak-free homes with high r-value enclosures buildingscience

 Deliver heated and cooled air in consistent manneruld to living space

© buildin Indoor Air Quality

- Control water entry
- Control interior pollution
 - Source control UIICI
 - Combustion appliances
 - Interior finishes
 - Things brought into the house
- Provide air change

Building Technologies Program

Energy Efficiency © buildingscience.com

Leakfree Construction

 Reducing the air leakage into and out of the building enclosure is critical for energy conservation and building durability

Airtight drywall

 Drywall typically provides the primary air barrier from inside to outside of the enclosure

8

PR-0507: Toward Zero Energy Drywall and Framing

Building Technologies Program

Energy Efficiency © buildingsciei

Thermally Efficient Assemblies

- Structure only where needed
- Insulating sheathing in osc
- Blown insulations that fill the entire void

Building Technologies Program

© buildingscience.com

Control of electric load

- Energy Star Lights
- Energy Star buildings Appliances

Plug Loads © buildingscience.com

Common Large plug loads: Items with internal heaters

- Cookers
- Hair dryersbuildingscien

Items with large-ish motors

- Dehumidifiers
- Vacuums

Duty Cycle is important!!!!

a watts used
enffee maker 000_1200
clothes washer
Clothes dryer
dishwasher
ceiling fan
hair dryer
clothes iron 1,000-1,800
microwave oven
Personal computer: CPU (awake)
monitor (awake) 150
radio (stereo)
refrigerator (16 n ³ melline) 725
27" television
toaster 800-1,400
vacuum cleanermann 1,000-1,400
water pump dep web

Energy Efficiency Heating/Cooling - Gas/Electric

Condensing furnaces yield efficiencies over 90% AFUE

- Typically sealed combustion
- Ducted system facilitates installation of ventilation system
- Get ECM motors
- Use High SEER AC units

Energy Efficiency Obuil Heating/Cooling - Electric

High efficiency air source heat pump (ASHP)

- Available up to 18 SEER
 & ~9 HSPF
- Simple & cheap installation (relatively speaking)
- No combustion risks

Building Technologies Program

Energy Efficiency buil Heating/Cooling - Electric

High efficiency ground source heat pump (GSHP) C build

- Moves heat to & from the ground, instead of burning stuff
- Year 'round heating and cooling at high efficiency
- No combustion risks
- Option of de-superheater hot water system

Energy Efficiency - Ventilation

Plan for ventilation:

- Air tight houses need controlled air change
- ERV's can deliver ING savings, but watch out for their electricity consumption
- Central Fan integrated system among the simplest

Energy Efficiency - Hot Water, Gas buildingscience.com

Sealed combustion gas, located in insulated space

- Efficiency of standard tanks reaches only ~62%
- Hard to justify in a ZEH, since solar collection system would more than pay for an upgrade

Building Technologies Program

Energy Efficiency Obui Hot Water - Gas, Tankless

- Tankless hot water heater eliminates standby losses
- Efficiencies in ~83% range -so a ~30% increase in hot water efficiency over gas tanks
- Locate hot water heater central to fixtures to create short piping runs
- Put piping in walls, not ground

How Does a Tankless Water Heater Work?

Building Technologies Program

Contended of the second second

Electric resistance

- High efficiencies available, up to 94%
- However, it's more expensive than gas
- Simple installation
- No combustion risks

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Integration

Building Science Consortium

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Integration © buildingscience.com Soil gas stack vented through Central return located in central hallway ngsciente.com Soll gas ventilation stack huildind Supply system Sub-slab stone lay

Building Technologies Program

Integration

© buildingscience.c

Foundations Walls Roofs

How much can we conserve from our current levels?

- Building enclosure savings:20%Mechanical Savings:20%Lights/Appliances/Plug:10%Conservation savings:55%
- Left to offset by site generation: scien 45% com Total savings: 100%

© buildingscience.com

- Only after loads have been reduced and mechanicals downsized should solar collection equipment be considered
 © buildingscience.com
- Solar hot water better payback should be considered first
- Solar PV system last piece of the whole

Solar Technologies Solar hot water (SHW):

 Consider appropriate location for system components (ideally, south roof for panels, insulated or protected interior space for tank)

Dividingscience.com

- Consider how system interacts with back-up heating source (electric tank, or gas boiler)
- Consider control strategy (PV panel, differential control, or thermosiphon)

Bringing you a prosperous future where energy is clean, abundant, reliable, and aff Building Technologies Program

Site Generated Energy - Hot Water buildingscience.com

SHW System - Not Simple!

- SHW systems can get to quite high temperatures
 - (180F at tank, over 200F between collector & tank) under normal operation
- Stagnation is when the solar collector is in full sun, but heat is not being moved to the storage tank
 - Leads to very high collector temperatures, and therefore elevated pressures in an antifreeze system
 - Result of low hot water usage, or times of high solar gains
- Verify all piping components can handle temperatures and pressures developed in SHW system under stagnation

All SHW systems must have a tempering valve

Building Technologies Program

Freeze protected Solar Hot Water System Options

Anti-freeze loop

Drain Back

Building Technologies Program

Freeze Tolerant Solar Hot Water System Options

- ICS (Integrated Collector Storage)
- Storage tank in the collector, or water warms up when sun shines in
- Water can cool overnight
- Simplest type
- Hybrid systems

Building Technologies Program

Site Generated Energy - Hot Water Duildingscience.com

Tank and piping

Panels on south roof

© buildingscience.com

- Solar Hot water will contribute about 10% of the remaining total
 Duildingscience.com
- Hot water use can vary widely, where space conditioning is more climate dependent

© buildingscience.com

• Other site generation for remaining 35%

Building Technologies Program

Site Generated Energy - Electricity

And the last step for the remaining 35%...PV panels

- Most costly component in getting to ZEH
 - Still, costs are half what they were 10 yrs ago
- Unfortunately, also one of the most visible
- Simple principle, no moving parts
- Generally low collection efficiency (less than ~15% of available solar energy)
- System loss reduces peak output by 10-20%
- Still the simplest, cheapest method for generating electricity from the sun directly

Photovoltaic effect: some theory

- Sun's rays (photons) strike semi-conductor PV panel
- Electrons are 'bumped up' to a higher energy state, leaving an electron hole and a high energy electron
- Electrons pass through house circuit on way back to electron hole

Converting sunlight directly into electricity!

Ok, it's magic...but it works repeatably, and it looks cool...

PV system layout: grid tied

- PV panels in sun
- DC wiring to disconnect
- DC disconnect
- Inverter
- AC wiring to main electric panel
- Utility meter & grid

PV system layout: stand alone

- PV panels
- DC wiring to charge controller
- Charge controller
- Battery bank
- Backup generator, etc

Building Technologies Program

Site Generated Energy - Integration •PV - bac

•**PV** - back-up batteries or grid connection

•Solar water passive system drawn down with demand

•Passive Solar Gain - awnings to protect from overheating

Building Technologies Program

Heating / Cooling Trade-off

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Extreme Home -Very Cold, Haidaburg, AK

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

1

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Building Technologies Program

Extreme Home - Extreme Details Roado **Root sheatting** 2x4 on edge on a 4" strip st 6" rigid insulation (three layer of 2") Metal clip angle Tyvek⁰ Stucorithap² Plywood or OSB sheathing 4" strip of 1/2" plywood to distribute the load Cavity realistics Zvill wood frame root Consum hourst cauleart, cloud or wated to top plate 1 a4 furring screwed into wood transa and Fastened through to rafter below 2x1 wood harve wai A" rigid insulation (two layers of 2") Cavity insulation Comit[®] Stock Wat Plyenod or OSB streathing pour board cauked, glued or Subhoo Assistant to bothers plan Houseway Fold floor housewaip up the wall and secure with bead of realant, storgle tap wall Tyyek[®] StucceWrap[®] over top. Indept screek Two 2x101 2v5 @ 24" 6 c Plywood or OS8 sheathing **Building Science Consortium** PR-0507: Toward Zero Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Very Cold - Colorado Springs, Colorado

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Very Cold - Details

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Very Cold - Details

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Building Technologies Program

HRV vs. Supply Ventilation

Yearly Energy Use: HRV vs Fan Cycling

			. (ion l			
Ventilation Air Heating	g	O. Airflow	% Heat	Climate	Yearly Energy		Cost @
		CFM	Recovery		92% AFUE	9	31.20/therm
Efficient HRV Fan only ((40w)	40	70%	7500 HDD	25.6 therms	\$	30.71
Fan Cycling Rightsized		40	0	7500 HDD	85.3 therms	\$	102.37
Fan Cycling RS+HRV	(C)	40	70%	7500 HDD	25.6 therms	\$	30.71
Inefficient HRV Fan (150)w)	40	70%	7500 HDD	25.6 therms	\$	30.71
Fan Cycling Oversized		40	O	7500 HDD	85.3 therms	\$	102.37
Constant RS Fan + HRV		40	70%	7500 HDD	25.6 therms	\$	30.71
			- dena				
Fan Energy	Duty	Unit	% Heating	Continuous	Yearly		Cost @
	Cycle	watts	Calls	Watts	Energy Use		\$0.12/kWh
Efficient HRV Fan only (100%	40		40	350 kWh	\$	42.05
Fan Cycling Rightsized	33%	250	13%	72	632 kWh	\$	75.83
Fan Cycling RS+HRV	33%	250	13%	112	982 kWh	\$	117.88
Inefficient HRV Fan (150	100%	150		150	1314 kWh	\$	157.68
Fan Cycling Oversized	33%	500	6%	156	1363 kWh	\$	163.55
Constant RS Fan + HR	100%	250	/: 13%	259	2265 kWh	\$	271.85
			$\eta \eta_{0}$				
			Jose		Yearly Energy		Yearly Cost
Efficient HRV Fan only ((40w)				1.2 MMBtu	\$	72.76
Fan Cycling Rightsized				CO.	2.2 MMBtu	\$	178.20
Fan Cycling RS+HRV					3.4 MMBtu	\$	148.59
Inefficient HRV Fan (150) //)				4.5 MMBtu	\$	188.39
Fan Cycling Oversized					4.7 MMBtu	\$	265.91
Constant RS Fan + HR					7.7 MMBtu	\$	302.56

HRV vs. Supply Ventilation

HRV vs. Supply Ventilation

Yearly Cost of HRV vs Fan Cycling 40 CFM, 7500 HDD, 70% HRV, 92% AFUE, \$0.12/kWh, \$1.20/therm \$350.00 \$300.00 \$250.00 \$200.00 \$150.00 \$100.00 \$50.00 \$-Fan Cycling Efficient HRV Fan Cyding Inefficient HRV Fan Cyding Constant RS Rightsized RS+HRV Oversized Fan + HRV Fan only (40w) Fan (150w)

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Cold - Pontiac, Michigan

andscaping shown for illustrative purposes only. Landscape plan to be developied.

M STREET SITE ELEVATION

Building Science Corporation Aschitecture and Building Science Westford, MA 01886 www.buildingcience.com r.v78.395.3100

·Com

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Cold: Venture Inc, Pontiac, MI

Heating Degree Days: 6228 Project Highlights (1190 sf House)

Building Enclosure

R-19 + R-5 Walls

R-38 attic / R-35 Cathedral ceiling Low E windows (U-0.33, SHGC-0.28) R-23 walls on conditioned basement BSC BA Airtightness (2.5 ins/100 sf)

Mechanical

92% AFUE Gas Furnace Ducts in conditioned space 0.82EF Tankless Hot Water Heater ASHRAE 62.2 ventilation by FanCycler Flourescent lighting

Solar Site Collection

40 sf glycol SHW system (3% Savings) 2.0 kW Peak PV system (10% Savings)

Space Heating Space Cooling DHW Appliances + Plug Lighting

e.com

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Cold - Cleveland, Ohio

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Cold: 71st St House, Cleveland, OH

Heating Degree Days: 6154 Project Highlights (1190 sf House)

Building Enclosure

R-19 + R-5 Walls

R-38 attic / R-35 Cathedral ceiling Low E windows (U-0.33, SHGC-0.45) R-8 walls on conditioned crawl BSC BA Airtightness (2.5 ins/100 sf)

Mechanical

0.75EF CA Combo System Heat 10 SEER Cooling System Ducts in conditioned space 0.59EF Tank Hot Water Heater ASHRAE 62.2 ventilation by FanCycler Flourescent lighting

Solar Site Collection

40 sf glycol SHW system (3% Savings) 2.0 kW Peak PV system (12% Savings)

Space Heating Space Cooling DHW Appliances + Plug Lighting

e.com

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

e.com

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Building Technologies Program

Mixed Humid, Fredricksburg, Virginia

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Mixed Humid: Haymount, VA

Heating Degree Days: 3939 Project Highlights (1190 sf House)

Building Enclosure

R-19 + R-5 Walls

R-38 attic / R-35 Cathedral ceiling Low E windows (U-0.33, SHGC-0.28) R-23 walls on conditioned crawl BSC BA Airtightness (2.5 ins/100 sf)

Mechanical

92% AFUE Gas Furnace 14 SEER Cooling System Ducts in conditioned space 0.82EF Tankless Hot Water Heater ASHRAE 62.2 ventilation by FanCycler Flourescent lighting

Solar Site Collection 40 sf glycol SHW system (4% Savings) 2.0 kW Peak PV system (15% Savings)

Space Heating Space Cooling DHW Appliances + Plug Lighting

e.com

Building Technologies Program

Mixed Humid, Fredricksburg, Virginia

Building Science Consortium

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Ideal Homes, OKC, OK **Specifications**

Building envelope

Ceiling Walls Foundation Windows

Infiltration

Mechanical systems

Heat Cooling DHW AHU location Ducts Duct Leakage Ventilation

Lighting Appliances & Plug **PV** System

Brilling America Zero Energ

Energy Star Appliances, 20% reduction in plug loads

R-38 blown cellulose at ceiling R-19 + R-3 insulating sheathing Slab, R-4 interior insulation Double Glazed Vinyl Frame LowE2 U=0.39, SHGC=0.31 2.5 sq in leakage area per 100 sf envelope

Home Plan 1644

4.3 COP Ground Source heat pump 20 EER ground source heat pump Rinnai Tankless HWH 0.82EF in conditioned space In vented attic, R-6 insulation 5% or less ERV with 70% energy recovery 46 CFM continuous average flow 90% compact fluorescent lighting 5.3 kWp array & 5 kW Inverter

Research Leading to Zero Energy Homes

Building Technologies Program

Mixed Humid - Details

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Mixed Humid - Details

		Total Source Energy Savings (H/C/DHW/Lights/Appliances/Plug)							
Parametric		Estimated Individual	Estimated Cumulative	Savings over	Change From	Annual Energy	Item	Simple Payback	Payback of Change
Run ID	Description of change	Cost	Cost	BA BM	Previous	Cost	Savings	(yr)	(yr)
0	Benchmark	n/a	n/a	n/a	n/a	\$1,659	n/a	n/a	n/a
1	0 + Envelope Upgrade	\$1,000	\$1,000	18.4%	18.4%	\$1,348	\$311	3	3
2	1 + Mechanical Upgrade	\$4,000	\$5,000	42.6%	24.1%	\$951	\$397	7	10
3	2 + Light-Appl Upgrade	\$1,000	\$6,000	50.5%	7.9%	\$818	\$134	7	7
4	3 + ERV	\$700	\$6,700	53.4%	2.9%	\$769	\$48	8	15
5	4 + PV Panels (5.3 kW)	\$31,000	\$37,700	89.1%	35.8%	\$168	\$601	25	52

Table 1. Summary of End-Use Site-Energy

	Annual				
	Annual S	ite Energy	Site Energy		
	BA Ben	chmark	Standard		
End-Use	kWh	therms	kWh	therms	
Space Heating	8232	0	2 <mark>6</mark> 17	0	
Space Cooling	4740	0	1199	0	
DHW	0	228	0	145	
Lighting*	2085		693		
Appliances + Plug	4779	0	4368	0	
Total Usage	19835	228	8877	145	
Site Generation	0	0	8051	0	
Net Energy Use	19835	228	826	145	

Table 2. Summary of End-Use Source-Energy and Savings

		Est. Annual	Source En	ergy Savings
		Source Energy	% of End-Use	% of Total
	BA Benchmark	Standard	Prototype 1	Prototype 1
ud-Use	106 BTU/yr	106 BTU/yr	Savings	Savings
pace Heating	84	27	68%	25%
pace Cooling	49	12	75%	16%
HW	27	17	36%	4%
ighting*	21	7	67%	6%
Appliances + Plug	49	45	9%	2%
otal Usage	230	108	53%	53%
Site Generation	0	-82		36%
Net Energy Use	230	26	89%	89%

Building Technologies Program

Extreme Home - Hot Humid, New Orleans, LA

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Hot Humid: New Orleans, LA

Heating Degree Days: 1437 Project Highlights (1260 sf House)

Building Enclosure

R-10 Foam Sheathed walls R-20 Foam over roof deck Low E windows (U-0.33, SHGC-0.3) R-10 Foam under floor framing BSC BA Airtightness (2.5 ins/100 sf)

Mechanical

8.5 HSPF ASHP
14 SEER Cooling System
Ducts in conditioned space
0.94EF Electric Hot water Tank
ASHRAE 62.2 ventilation by FanCycler
Flourescent lighting

Solar Site Collection

40 sf glycol SHW system (12% Savings) 2.0 kW Peak PV system (15% Savings)

Space Heating Space Cooling DHW Appliances + Plug Lighting

e.com

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Extreme Home - Hot Humid - Details

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Extreme Home - Hot Humid - Details

Building Technologies Program

Utility Savings across the US

