U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Building Technologies Program

Integrating Systems for Green Design

Betsy Pettit, AIA Building Science Corporation www.buildingscience.com

EEBA, Colorado Springs, October 2005

PR-0504: Integrating Systems for Green Design

What makes good building design?

Firmness, commodity, and delight?

"Well building hath three conditions: firmness, commodity, and delight." This quote is taken from Sir Henry Wotton's version of 1624, and is a plain and accurate translation of the passage in Vitruvius

Homo Vitruvianus By Leonardo da Vinci

Building Technologies Program

Vitruvius also said,

"These are properly designed, when due regard is had to the country and climate in which they are erected. For the method of building which is suited to Egypt would be very improper in Spain, and that in use in Pontus would be absurd at Rome: so in other parts of the world a style suitable to one climate, would be very unsuitable to another: for one part of the world is under the sun's course, another is distant from it, and another, between the two, is temperate".

Building Technologies Program

Green Building

Minimize Need for Energy, Water and Materials

Satisfy Need with Least Disruption. Reduce, Reuse, Recycle Managed Resource Extraction and Processing

Durability

The effects of building development on the environment are at the most basic level about **durability**. Building a house or community is really about the durability of people (health, safety and well being of people), the durability of buildings (the useful service life of a building is typically limited by its durability), and the durability of the planet (the well being of the local and global environment). **Durability** is really another way of expressing the concept of **sustainability** to the building community.

Goals

- Create buildings that ensure a healthy environment for its occupants
- Deliver building that are durable (life expectancy of 100 years with only minimal replacement of parts needed) thereby reducing future waste and depletion of natural resources
- Deliver buildings that have low total energy consumption during their lifetime. They must have low operating energy since operating energy accounts for 70-to-90% of the total energy consumption

Operating Energy	+
Embodied Energy	+
Decommissioning Energy	+

Total Energy

Building Technologies Program

Priorities

Integrating Systems for (green) building design

Leak-free thermally efficient enclosure systems

- Intentional openings for exhaust of pollutants
- Intentional openings for outside air intake
- Control of materials intentionally brought into building

Right-sized integrated mechanical systems

- Efficient distribution of conditioned air
- Efficient removal of pollutants
 - Efficient filtration
 - Efficient introduction of outside air for dilution

Budget = Form (dictates choices for enclosure design)

- Structure
- Foundation type
- Roof design
- Cladding type
- Energy collection systems

Budget = Sophistication (dictates choices for mechanical systems)

- Mechanical equipment efficiency, motors, burning fuels, moving air
- Ability to clean, distribute, recover energy, dehumidify
- Collecting and using site generated energy

System Integration

Improvements in the enclosure(+)Downsize the mechanical equipment(-)

Better Performance, lower energy bills

Type of Occupancy dictates choices for enclosure & mechanical systems

- Comfort of Occupants
- Indoor Air Quality
- Energy Efficiency

Comfort, indoor air quality, energy efficiency, durability all require...

- Leak-free buildings with high R-value enclosures
- Source control of pollutants
- Heated or cooled air delivered in consistent manner to occupied space
- Outside air change with mixing

Provide a Durability Plan

- ✓ Foundation moisture control strategies
- ✓ Wall moisture control strategies
- ✓ Roof moisture control strategies
- ✓ Interior "wet" rooms moisture control strategies
- ✓ Mechanical systems moisture control strategies

In order to control the air

Enclose the air

- An enclosure is constructed
- This enclosure provides closure for all six sides of the cube
- Openings in the enclosure should be intentional
 - Doors, Windows, Exhaust vents, Outside Air Intake

Staggering rooms or using wing walls increases ventilation through rooms oriented north to south

Establish Enclosure Tightness

Same metric everywhere

- What metric?

Not too tight, not too leaky, just right (depends on ventilation system choice

Trial and error

Between 2 and 3 ach@ 50 Pa

- Leakier than the Canadian R-2000
- **Tighter than the typical American home**
- Achievable- Over 100,000 built to this standard under this program

Air brought into the the home can be

- Heated
- Cooled
- Humidified
- Dehumidified
- Cleaned, Filtered
- Distributed, Mixed

Energy is spent in the process cience.cor

According to ASHRAE 62.2

- The same amount everywhere, every climate
- Big houses need more air than smaller houses
- Selecting materials does not affect the rates under current thinking
 - This will change as we learn more in the future
- We assume the enclosure are equally leaky everywhere regardless of age

Bringing in Outside Air Can Be Expensive in Terms of Energy

- We do not want to bring in more than we need
- If we build a perfectly tight enclosure and eliminate uncontrolled air leakage, the above is possible

Fan Recycling Application

Activates the central system fan for a selectable ON time if it has been inactive for a selectable OFF time

- Improved comfort control by periodic mixing
- Improved indoor air quality by periodic full distribution of ventilation air

Control of Moisture Pollutant

- In cold climates, it is interior moisture generation
 - Air change with dryer outside air
- In hot humid climates, it is exterior moisture
 - Dehumidification through cooling or dedicated dehumidifiers

Ducts in Conditioned Space - Mixed Dry Climate

Building Technologies Program

Ducts in Conditioned Space - Hot Dry Climate

Building Technologies Program

Cold Climate - Ohio

Building Technologies Program

Cold Climate - Ohio

Building Technologies Program

Cold Climate Integration

Building Technologies Program

Cold Climate Integration

Building Science Consortium

Building Technologies Program

Cold Climate - Cleveland, Ohio

Building Technologies Program

Cold - Details

Building Technologies Program

Cold - Details

Energy Efficiency

Thermally Efficient Assemblies

- Insulating sheathing
- Blown insulations that fill the entire void

Cold Climate - Details

Energy Efficiency - Ventilation

Plan for ventilation:/

- Air tight houses need controlled air change
- ERV's can deliver savings, but watch out for their electricity consumption
- Central Fan integrated system among the simplest

Building Technologies Program

Cold Climate - Carbondale, Colorado

Energy Efficiency Heating/Cooling - Gas/Electric

Condensing furnaces yield efficiencies over 90% AFUE

- Typically sealed combustion
- Ducted system facilitates installation of ventilation system
- Get ECM motors
- Use High SEER AC units

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Building Technologies Program

Very Cold - Details

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Building Technologies Program

Very Cold - Details

Building Technologies Program

Very Cold - Details

Energy Efficiency Hot Water - Gas, Tankless

- Tankless hot water heater eliminates standby losses Efficiencies in ~83% range – a ~30% increase in hot water efficiency over gas tanks Locate hot water heater central to fixtures to create short piping runs
- Put piping in walls, not ground

How Does a Tankless Water Heater Work?

Building Technologies Program

Cold Climate - Details

Cold Climate DAS Construction, Cleveland EcoVillage, OH

Building America Toward Zero Energy Homes - Cleveland

Cleveland EcoVillage Townhouses

Project Highlights (1666 sf House)

Building Enclosure	R-19 2x6 24 oc + R-5 walls	1
	R-38 vented attic	
	Low E windows (U-0.36, SHGC-0.45)	1
	R-10: 2" XPS on basement walls	1
	R-8 2" EPS under entire slab	
	BSC BA Airtightness (2.5 ins/100 sf)	Г
Mechanical	90%+ AFUE Sealed-Combustion Furnace	
	12 SEER Air Conditioner Split System	=
	0.59 EF Power-Direct Vent Water Heater	
	Fan cycler ventilation system	T
		C
Solar Site Collection	3.8 kW Peak PV system	r

Energy Performance

	MMBtu/yr
Heating	38.6
Cooling	5.4
Hot water	21.4
Light/Appl	n/c
Sub-total	65.4
Solar PV Collection	-13.5
Total Predicted Use	51.9
MEC 95 Predicted Use	130.8
% Savings vs MEC 95	60%

.

Building Technologies Program

Building America

DAS Construction, Cleveland EcoVillage, OH

PR-0504: Integrating Systems for Green Design

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Building Technologies Program

Foundation Detail

Division 6: Wood - FSC-certified, focus on engineered wood products/efficient framing

Building Technologies Program

Building America

DAS Construction, Cleveland EcoVillage, OH

Cold Climate - Loveland, Colorado - McStain Site Generated Energy - Heat, Hot Water

Energy Performance

Building America Toward Zero Energy Home Projects

McStain Enterprises Discovery House (Boulder, CO)

Project Highlights (2512 sf House)

Building Enclosure	Walls: 2x6 24 oc R-19 + R-4 insul. shth.	Heating	100.2
	R-44 blown cellulose at ceiling	Cooling	0.7
	Solar Low E windows (U-0.35, SHGC-0.34)	Hot water	31.0
	Insulated foundation (R-11 wall, R-6 floor)	Light/Appl	55.2
	BSC BA Airtightness (2.5 ins/100 sf)	Sub-total	187.1
Mechanical	High Efficiency (92% AFUE, 20 EER) Combo system	Solar SHW Collection	-27.2
	ASHRAE 62.2 ventilation by HRV	Total Predicted Use	159.9
	Flourescent lighting	Benchmark Predicted Use	283.0
Solar Site Collection	96 sf drain back SHW system Integrated with heating system	% Savings vs BA Benchmark	44%

MMBtu/vr

Building Technologies Program

Site Generated Energy - Heat, Hot Water

Building Technologies Program

Enclosure Design

Building Technologies Program

Enclosure Design

Cold Climate - Carbondale, Colorado Novy Architects - Fenton Construction

Energy Performance

Building America Toward Zero Energy Home Projects

CORE/Fenton Construction: Blue Creek Ranch: Next Generation Homestead Houses

Project Highlights (1256 sf House)

Building Enclosure	R-19 2x6 24 oc OVE w. damp-spray cellulose	Heating	66.8
	R-56 blown cellulose (14" minimum)	Cooling	0.0
	Low E windows (U-0.36, SHGC-0.48)	Hot water	28.0
	Conditioned Crawl (R-10)	Light/Appl	44.6
	BSC BA Airtightness (2.5 ins/100 sf)	Sub-total	139.4
Mechanical	High Efficiency (92% AFUE)	Solar PV Collection	-21.8
	Condensing Boiler	Solar SHW Collection	-22.8
	Integrated DHW / SHW / space heating system	Total Predicted Use	94.7
	ASHRAE 62.2 ventilation by HRV		
	Flourescent lighting	Benchmark Predicted Use	173.0
Solar Site Collection	52 sf glycol solar thermal system	% Savings vs	
	1.68 kW Peak PV system	BA Benchmark	45%

MMBtu/vr

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Building Technologies Program

Building Science Consortium

Mixed Humid Climate - Barley Phieffer Design -Anderson Sargent Homes - Dallas

Building Technologies Program

Energy Performance

Building America Zero Energy Home Projects- Dallas

Anderson Sargent Homes: Dallas Parade of Homes

Project Highlights (3814 sf House)

			····
Building Enclosure	Durisol walls (R-14)	Heating	17.4
	Spray foam unvented attic (R-30)	Cooling	18.2
	Solar Low E windows (U-0.38, SHGC-0.29)	Hot water	19.8
	Insulated Radiant Slab (R-5)	Light/Appl	66.5
	BSC BA Airtightness (2.5 ins/100 sf)	Sub-total	121.8
Mechanical	High Efficiency (9 HSPF, 13 SEER)	Solar PV Collection	-82.5
	Chilled Water Heat Pump	Solar SHW Collection	-11.8
	Tankless HWH back-up (0.82EF)	Total Predicted Use	27.5
	ASHRAE 62.2 ventilation		
	Flourescent lighting	Benchmark Predicted Use	329.0
Solar Site Collection	64 sf SHW system	% Savings vs	
	8.12 kW Peak PV system	BA Benchmark	92%

MMBtu/vr

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

61

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable **Building Technologies Program**

Building Technologies Program

Mixed Humid Climate - Ideal Homes, - Oklahoma

Building America Zero Energy Home Projects - Oklahoma

Ideal Homes, OKC, OK

Project Highlights (1644 sf House)

Building Enclosure	Walls: 2x6 24 oc R-19 + R-3 insul. shth.
	R-38 blown cellulose at ceiling
	Radiant barrier roof sheathing
	Solar Low E windows (U-0.39, SHGC-0.31)
	Insulated Slab edge (R-3)
	BSC BA Airtightness (2.5 ins/100 sf)

Mechanical High Efficiency (4 COP, 20 EER) Ground Source Heat Pump Tankless HWH (0.82EF) ASHRAE 62.2 ventilation by ERV Flourescent lighting

Solar Site Collection 5.3 kW Peak PV system

Energy Performance

/yr
6.8
1.6
4.5
4.5
7.4
2.5
4.9
0.0
9%

Energy Efficiency Heating/Cooling - Electric

High efficiency ground source heat pump (GSHP)

- Moves heat to & from the ground, instead of burning stuff
- Year 'round heating and cooling at high efficiency
- No combustion risks
- Option of de-superheater hot water system

Building Technologies Program

Hot Humid Climate - South Georgia

Building Technologies Program

Building America Toward Zero Energy Homes- South Georgia

GA DNR Admin Building SIPS Cottage (Fargo, GA)

Project Highlights (1880 sf House)

SIPS walls (R-23) & roof (R-38)	Heating
Solar Low E windows (U-0.33, SHGC-0.33)	Cooling
Conditioned Insulated (R-8) crawl	Hot wa
BSC BA Airtightness (2.5 ins/100 sf)	Light/A
	Sub-tot
High Efficiency (9 HSPF, 13 SEER)	
Air Source Heat Pump	Solar F
Marathon Electric HWH (0.94EF)	Total P
Stand alone dehumidifier	
ASHRAE 62.2 ventilation	Benchr
Flourescent lighting	
	% Savi
2.9 kW Peak PV system	BA Ber
	SIPS walls (R-23) & roof (R-38) Solar Low E windows (U-0.33, SHGC-0.33) Conditioned Insulated (R-8) crawl BSC BA Airtightness (2.5 ins/100 sf) High Efficiency (9 HSPF, 13 SEER) Air Source Heat Pump Marathon Electric HWH (0.94EF) Stand alone dehumidifier ASHRAE 62.2 ventilation Flourescent lighting 2.9 kW Peak PV system

Energy Performance

	MMBtu/yr
Heating	16.5
Cooling	26.9
Hot water	16.7
Light/Appl	50.6
Sub-total	110.7
Solar PV Collection	-48.9
Total Predicted Use	61.8
Benchmark Predicted Use	180.0

% Savings vs	
BA Benchmark	66%

Building Technologies Program

Site Generated Energy - Integration

•**PV** - back-up batteries or grid connection

•Solar water passive system drawn down with demand

•Passive Solar Gain - awnings to protect from overheating

Energy Efficiency - Hot Water, Electric

Electric resistance

- High efficiencies available, up to 94%
- However, it's more expensive than gas
- Simple installation
- No combustion risks

Building Shell: Strategies Used

- High levels of insulation and leak free construction
- Reflective roofing
- High performance windows
- High Ceilings and Deep wrap around porches with strategically placed windows to promote natural ventilation

Building Technologies Program

Ductwork in Conditioned Crawlspace

