Special Topics on Residential HVAC

by

Armin Rudd Building Science Consortium USDOE Building America Program

> for EEBA Conference 2002 Phoenix, Arizona 10 October 2002

Two Main Topics:

1. Cyclical trade-offs between building envelope improvements, reduced system size, and more efficient systems.

2. If I could change two things!

Climate Specific Design Solutions

• Better Envelopes

- Allow for reduced cooling system size
- Decrease energy consumption
- Increase occupant comfort
- Make overall performance more predictable
- Improve the more permanent features of a home which has longer-term sustainability benefits to society

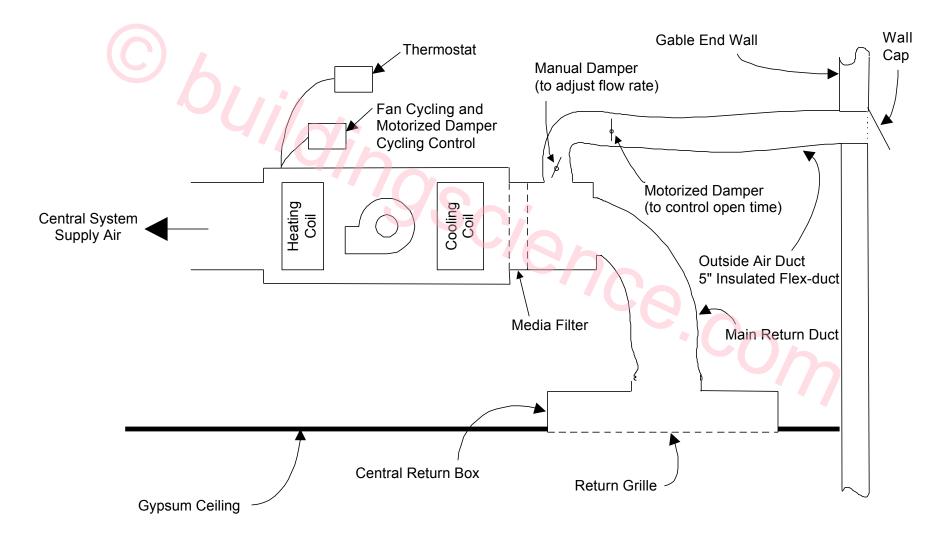
- Reduced cooling system size
 - Helps pay for a better envelope
 - Avoids cooling system short-cycling
 - which improves moisture removal
 - allows the system to operate at higher average efficiency

More efficient systems

- Are most cost effective when the load is high
 - this is in conflict with our premise to first reduce loads through improved envelopes
- High efficiency cooling systems generally have a higher evaporator coil temperature which reduces moisture control
 - this can be changed with effective control of ECM air handlers
- High efficiency heating systems are generally also sealed combustion which is also good for health and safety

Sealed combustion furnace with ECM air handler and special thermostat

Electronically Commutated Motor (ECM) closeup

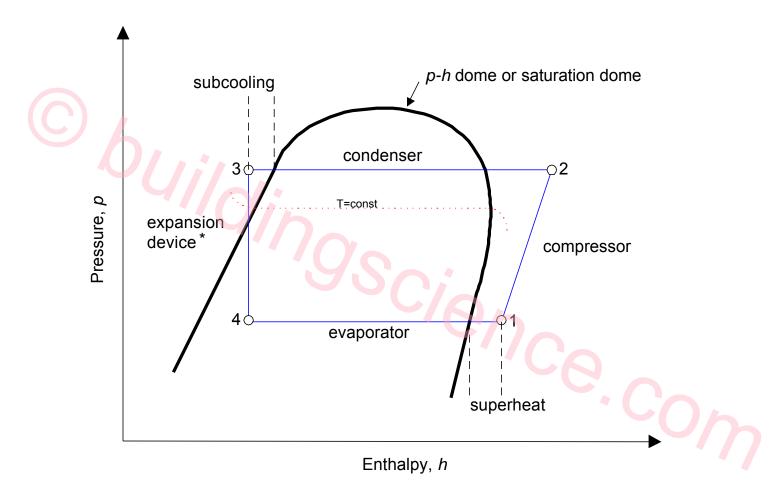


Building Science Corporation

Let's work with our premise that it's best to improve the envelope first. Where should we start?

- Air distribution system leakage
- Windows
- Random infiltration and controlled mechanical ventilation
- Insulation
 - roofs
 - walls
 - slab-edge (below grade walls)

Central-fan-integrated supply ventilation Unvented-cathedralized attic configuration Media filter and motorized damper

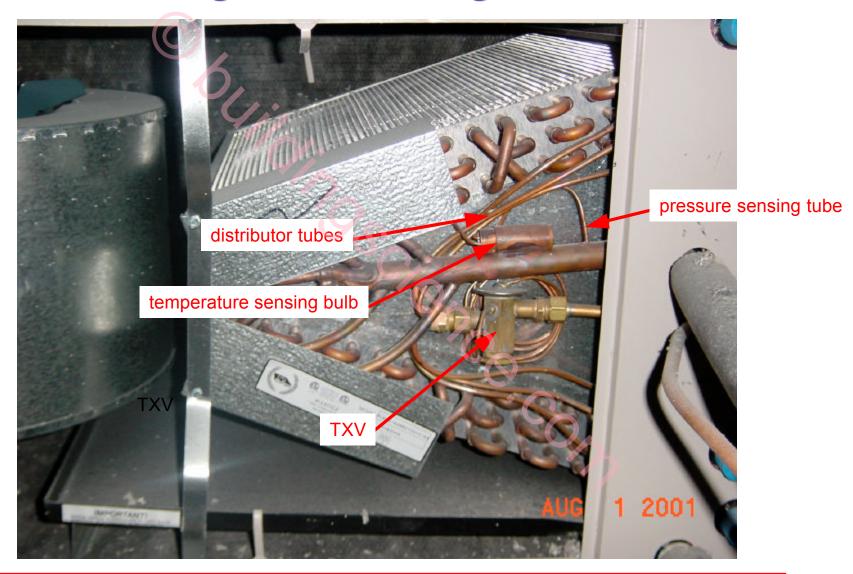


If I could change two things!

#1 All refrigerant cooling systems would have factory installed TXV's

- Thermal expansion valves meter refrigerant to the evaporator and automatically adjust refrigerant flow over a range of system charge and environmental conditions
 - "Super heat controller" protects the compressor from liquid refrigerant
 - Maintains system efficiency under a wide range of operating conditions, precise charging is less important

Pressure vs. Enthalpy Diagram of the Idealized Vapor Compression Refrigeration Cycle



* TXV, fixed orifice, or capillary tube

- Superheat is equal to the vapor line temperature minus the vapor saturation temperature, and is required to make sure that only vapor reaches the compressor

- Subcooling is equal to the liquid saturation temperature minus the liquid line temperature, and is required to make sure that only liquid reaches the expansion device

Thermal expansion valve (TXV) refrigerant metering device

TXV Advantages

- According to research by Proctor Engineering, the performance loss using a TXV metering device is about 5% if the refrigerant charge is off by plus or minus 20%.
- The performance loss using a fixed metering device (capillary tube or orifice) is about 15% to 20% if the refrigerant charge is off by plus or minus 20%.
- According to a California Energy Commission report, installing TXV's in all systems would increase the seasonal efficiency 11%.

What if I think the TXV cost is too high?

Then compare it to the cost of:

- only starting up fixed metering systems when the environmental conditions are favorable to getting a target superheat of 5 F or greater
- waiting a long time while you:
 - add or subtract charge by trial and error
 - let the system settle for 20 minutes before taking new readings and hope the superheat is within 3 F of spec
 - repeat as necessary
 - then often find that the house has cooled down such that your indoor wet bulb temperature is too low to give a target superheat greater than 5 F, so you have to heat the house and start over again (let's hope the gas meter has been set)
- coming back to do this again within the warranty period because of a customer complaint and a slow refrigerant leak

-												Date		Mat	Dulls 7	ame	rotur	0 /0 D										22
												Rett	ım Aiı		eturn, v		ratur	e (~F)										
	3	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
	55	8.8	10.1	11.5	12.8	14.2	15.6	17.1	18.5	20.0	21.5	23.1	24.6	26.2	27.8	29.4	31.0	32.4	33.8	35.1	36.4	37.7	39.0	40.2	41.5	42.7	43.9	45.0
	56	8.6	9.9	11.2	12.6	14.0	15.4	16.8	18.2	19.7	21.2	22.7	24.2	25.7	27.3	28.9	30.5	31.8	33.2	34.6	35.9	37.2	38.5	39.7	41.0	42.2	43.4	44.6
	57	8.3	9.6	11.0	12.3	13.7	15.1	16.5	17.9	19.4	20.8	22.3	23.8	25.3	26.8	28.3	29.9	31.3	32.6	34.0	35.3	36.7	38.0	39.2	40.5	41.7	43.0	44.2
	58	7.9	9.3	10.6	12.0	13.4	14.8	16.2	17.6	19.0	20.4	21.9	23.3	24.8	26.3	27.8	29.3	30.7	32.1	33.5	34.8	36.1	37.5	38.7	40.0	41.3	42.5	43.7
	59	7.5	8.9	10.2		13.0	14.4	15.8	17.2	18.6	20.0	21.4	22.9	24.3	25.7	27.2	28.7	30.1	31.5	32.9	34.3	35.6	36.9	38.3	39.5	40.8	42.1	43.3
	60	7.0	8.4	9.8	11.2		14.0	15.4	16.8	18.2	19.6	21.0	22.4	23.8	25.2	26.6	28.1	29.6	31.0	32.4	33.7	35.1	36.4	37.8	39.1	40.4	41.6	42.9
	61	6.5	7.9	9.3	10.7	12.1	13.5	14.9	16.3	17.7	19.1	20.5	21.9	23.3	24.7	26.1	27.5	29.0	30.4	31.8	33.2	34.6	35.9	37.3	38.6	39.9	41.2	42.4
	62	6.0	7.4	8.8	100 C C C C C C C C C C C C C C C C C C	 	13.1	14.5	15.9	17.3	18.7	20.1	21.4	22.8	24.2	25.5	27.0		29.9	31.3	32.7	34.1	35.4	36.8	38.1	39.4	40.7	42.0
	63	5.3	6.8	8.3	9.7	11.1	12.6	Set 20, 923	15.4	16.8	18.2	19.6		22.3	23.6	25.0	26.4		29.3	30.7	32.2	33.6		36.3	37.7	39.0	1000000028	41.6
6	64		6.1	7.6		10.6	12.0	2012/00/01	14.9	16.3	17.7	19.0	0.2122-022	21.7	23.1	24.4	25.8	27.3	28.7	30.2	31.6	33.0		35.8	37.2	38.5	39.9	C-0.000000
e H	65		5.4	7.0	8.5	10.0	11.5	and the standards	14.3	15.8	17.1	18.5		21.2	22.5	23.8	25.2	26.7	28.2	29.7	31.1	32.5 32.0		35.3	36.7	38.1 37.6	39.4 39.0	40.8
Ire	66 67	÷.		6.3 5.5	7.8 7.1	9.3 8.7	10.8 10.2	12.3 11.7	13.8 13.2	15.2 14.6	16.6 16.0	18.0 17.4	19.3 18.8	20.7	22.0 21.4	23.2 22.7	24.6 24.1	26.1 25.6	27.6 27.1	29.1 28.6	30.6 30.1	31.5	33.4 33.0	34.9 34.4	36.3 35.8	37.0	38.6	39.9
att	68	÷ .	2	0.0	6.3	8.0	9.5	11.1	12.6	14.0	15.5	16.8		19.5	20.8	22.1	23.5	25.0	26.5	28.0	29.5	31.0		33.9	35.3	36.8	38.1	39.5
Jer .	69	C		100	5.5	7.2	8.8	10.4	11.9	13.4	14.8	16.3		19.0	20.0	21.5	22.9	100000000000000000000000000000000000000	26.0	27.5	29.0	30.5		33.4	34.9	36.3	37.7	39.1
E	70	<u> </u>			0.0	6.4	8.1	9.7	11.2	12.7	14.2	15.7	100000	18.4	19.7	20.9	22.3	23.9	25.4	27.0	28.5		31.5	33.0	34.4	35.9	37.3	38.7
Dry-Bulb Temperature (°F) T contense to)	71	-	-			5.6	7.3	8.9	10.5	12.1	13.6	15.0		17.8	19.1	20.3	21.7	23.3	24.9	26.4	28.0		31.0	32.5	34.0	35.4	36.9	38.3
dl a	72	2	2	32	-	-	6.4	8.1	9.8	11.4	12.9	14.4	15.8		18.5	19.7	21.2	22.8	24.3	25.9	27.4	29.0	30.5	32.0	33.5	35.0	36.5	37.9
m e	73	1 X -	× .	34	840	843	5.6	7.3	9.0	10.7	12.2	13.7	15.2	16.6	17.9	19.2	20.6	22.2	23.8	25.4	26.9	28.5	30.0	31.5	33.1	34.6	36.0	37.5
S-	74	Ψ.	÷	(e	197	1948	-	6.5	8.2	9.9	11.5	13.1	14.5	15.9	17.3	18.6	20.0	21.6	23.2	24.8	26.4	28.0	29.5	31.1	32.6	34.1	35.6	37.1
Air C	75	5	5	22	87-3	3.73	3.78	5.6	7.4	9.2	10.8	12.4	13.9	15.3	16.7	18.0	19.4		22.7	24.3	25.9	27.5	29.1			33.7	35.2	36.7
	76	31	2	2	1	1878	1	- 70	6.6	8.4	10.1	11.7	13.2	14.7	16.1	17.4	18.9		22.1	23.8	25.4	27.0	28.6	30.1	31.7	33.3	34.8	36.3
Condenser	77	8	8	12	370	358	378	378	5.7	7.5	9.3	11.0		14.0	15.4	16.8	18.3		21.6	23.2	24.9	26.5		29.7	31.3	32.8	34.4	36.0
len	78		2	22	1225	120	220	1220	20	6.7	8.5	10.2	10723303	13.4	14.8	16.2	17.7	19.4	21.1	22.7	24.4	26.0	C 100 C 100 C 100 C	29.2	30.8	32.4	34.0	35.6
nc	79		2	3 -			2.42	242	-22	5.9	7.7	9.5	11.1	12.7	14.2	15.6	17.1	18.8	20.5	22.2	23.8	25.5	140304130.20	28.8	30.4	32.0	33.6	35.2
ö	80	*	*		· •	- 40			- 22	-	6.9	8.7	10.4	12.0	13.5	15.0	16.6	18.3	20.0	21.7	23.3	25.0	26.7	28.3	29.9	31.6	33.2	34.8
	81		÷	6 .	3. 9 31	-	्रस्थ	्रस्थ	-8	2	6.0	7.9	9.7	11.3	12.9	14.3	16.0	17.7	19.4	21.1	22.8	24.5	26.2	27.9	29.5	31.2	32.8	34.4
	82		~		÷.	1.00			₹	*	5.2	7.1 6.3	8.9 8.2	10.6 9.9	12.2	13.7 13.1	15.4	17.2 16.6	18.9 18.4	20.6 20.1	22.3 21.8	24.0 23.5	25.7 25.2	27.4 26.9	29.1 28.6	30.7 30.3	32.4 32.0	34.0 33.7
	83 84	100	5	10	8 7 53	80.53	2378	-	52	2	107	5.5	7.4	9.9	10.9	12.5	14.9 14.3	16.0	17.8	19.6	21.0	23.0	25.2	26.9	28.2	29.9	31.6	33.3
	85		3.	12	2		2	1		3.	22	0.0	6.6	9.2 8.5	10.3	11.9	13.7	15.5	17.3	19.0	20.8	22.6	24.0	26.0	27.8	29.9	31.2	32.9
	86	10	10	12	12	1022	22	22	-	10	82	8233	5.8	7.8	9.6	11.3	13.2	15.0	16.7	18.5	20.3	22.1	23.8	25.6	27.3	29.1	30.8	32.6
	87	2	2	32	34-55	543	5-22	5-22	23	12	82	34-33	5.0	7.0	8.9	10.6	12.6	14.4	16.2	18.0	19.8	21.6	23.4	25.1	26.9	28.7	30.4	32.2
	88	1	÷	<u></u>	141	-	C 49	140	43	<u></u>	(A)	14	-	6.3	8.2	10.0	12.0	13.9	15.7	17.5	1000000000	21.1	22.9	24.7	26.5	28.3	30.1	31.8
1	89	-	-	-	5 .					÷	20	-	0.000	5.5	7.5	9.4	11.5	13.3	15.1	100 m 100	18.8	12223-24Co.2		24.3	the second s	27.9	212.2010.0014.1	
	90	<u> </u>	<u> </u>	-		29-02	5.70	5.75	-3		100		2. 2.	2870	6.8	8.8	10.9	15.120 AL	100000000000000000000000000000000000000	16.5		50.000.00	22.0	23.8	110000-04	27.5	29.3	31.1
	1.1.1	3.5	28.2	325	STORE	100.852	- 312	12	1 522	28.0	257	922	51000	10089		1.4.4												

Table 1: Target Superheat (Suction Line Temperature - Evaporator Saturation Temperature)

source: California Energy Commision report 2001

Phoen	iix, AZ	Maximum outdoor drybulb to use listed minimum indoor wet bulb												
1100 f	t elev	63	73	84	100	112								
		Possibility of	5+ F target su	perheat at liste	d minimum inc	loor wet bulb								
	Indoor, Tdp	50	55	60	65	68								
Jan	35 🦊	yes	heat to 78	no	no	no								
Feb	35	yes	heat to 78	no	no	no								
Mar	35	yes	heat to 78	no	no	no								
Apr	37	yes	yes	no	no	no								
May	38	yes	yes	no	no	no								
Jun	44	yes	yes	yes	no	no								
Jul	60	n/a	n/a	n/a	yes	heat to 84								
Aug	62	n/a	n/a	n/a	yes	heat to 81								
Sep	55	n/a	n/a	yes	heat to 83	no								
Oct	46	yes	yes	heat to 80	no	no								
Nov	38	yes	yes	no	no	no								
Dec	35	yes	heat to 78	no	no	no								

When it's not more than:

63 F outside, you can check superheat any time (except Jul-Sep when it will never be <63 outside) 73 F outside, it's workable, but requires some pre-heating in winter, and Jul-Sep are out 84 F outside, Jun and Sep are good, Jul-Aug are out, Oct requires pre-heating to 80 F, the rest higher 100 F outside, Jul-Aug are good months, Sep requires pre-heating to 83 F, the rest are out 112 F outside, Jul-Aug require pre-heating to 81 and 84 respectively, the rest are out

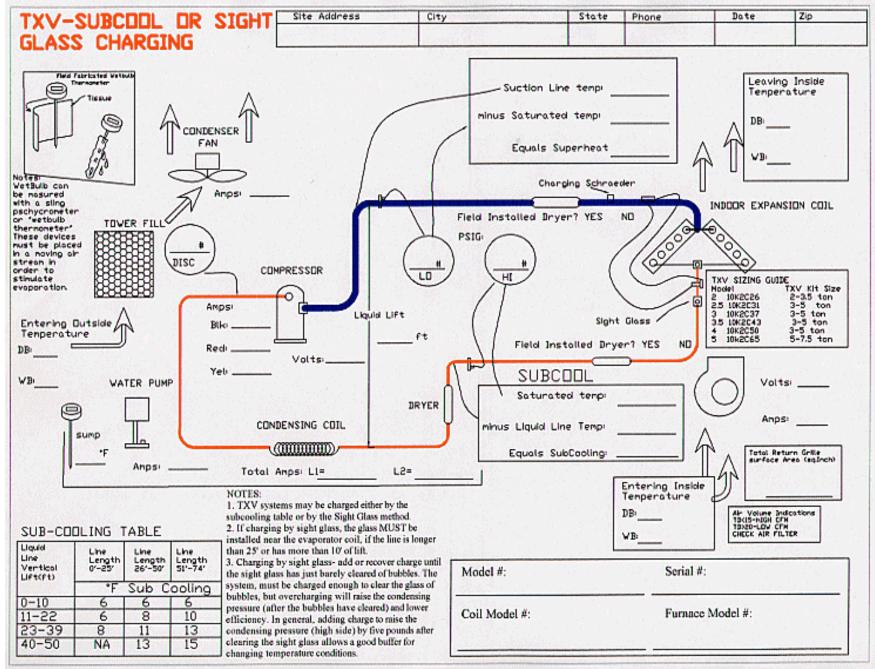
	Phoenix, AZ		Maximu	m outdoor drybu	lb to use listed n	ninimum indoor	wet bulb									
	1100 ft elev		63	63 73 84 100												
			Minimun	Minimum indoor drybulb to reach listed minimum indoor wet bulb												
	Outdoor, Tdp	Indoor, Tdp	50	55	60	65	68									
Jan	33	35	66	78	91	106	116									
Feb	33	35	66	78	91	106	116									
Mar	33	35	66	78	91	106	116									
Apr	35	37	64	76	89	104	113									
May	36	38	63	75	89	103	113									
Jun	42	44	57	69	65	97	107									
Jul	58	60				75	84									
Aug	60	62				71	81									
Sep	53	55			68	83	93									
Oct	44	46	55	67	80	95	105									
Nov	36	38	63	75	89	103	113									
Dec	33	35	66	78	91	106	116									

When it's not more than:

63 F outside, you can check superheat any time (except Jul-Sep when it will never be <63 outside) 73 F outside, it's workable, but requires some pre-heating in winter, and Jul-Sep are out 84 F outside, Jun and Sep are good, Jul-Aug are out, Oct requires pre-heating to 80 F, the rest higher 100 F outside, Jul-Aug are good months, Sep requires pre-heating to 83 F, the rest are out 112 F outside, Jul-Aug require pre-heating to 81 and 84 respectively, the rest are out

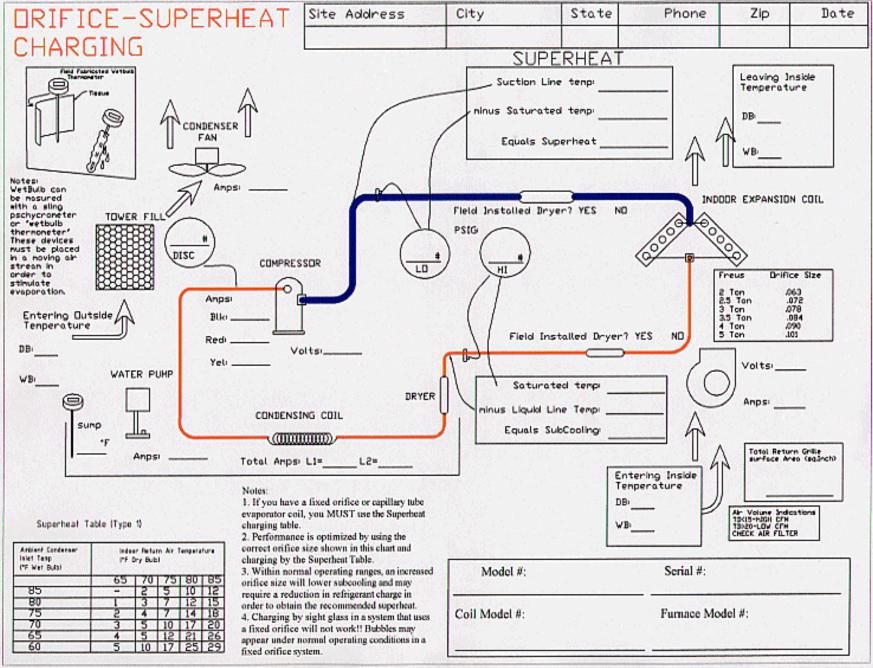
If I could change two things!

#2 Get rid of the "caveman" appliances


 Caveman appliances are those that build a fire inside the dwelling and require air from the dwelling to vent combustion products, or don't vent combustion products at all. Working within the realm of energy-efficient and healthy housing, it can be frustrating to worthless dealing with the various code issues, and the work of verification for:

- vent types, sizes, clearances, horizontal distances
- make-up air
- dilution air
- worst case depressurization
- back-drafting

Let's do---


Sealed combustion only inside conditioned space!

Page 22 of 25

source: Freus Air Conditioning

source: Freus Air Conditioning

2												Retu	ım Aiı	Wet-	Bulb 1	empe	ratur	e (°F)										
	4														return, s			12 (k										
3	1	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
	91	38	20		2.0	28	2	10	6	24	1	-	-	22	6.1	8.1	10.3	12.2	14.1	15.9	17.8	 Control (1997) 111 	21.5	23.4	25.2	V (2) (2) (2) (3)	28.9	* 2.25 LA 250
	92	39	39	(1 -3)	1	40	1	1	э.	39	3 - 3	1942	1042	46	5.4	7.5	9.8	11.7	13.5	1100-120	100 C 100 C 100 C 100 C	19.2				26.7		
	93	- 29	29	-	12945		- 8	8	- E	2 9	3 . 33	2040	2245	-	-	6.8	9.2	11.1	13.0	14.9	16.8	18.7	20.6			26.3		
	94	- 28	8 9	1. e. (100	-	- 8	8		8 9	200	19 1 -1	100		8	6.2	8.7	10.6	12.5	14.4	16.3	18.2	20.2	22.1	24.0			
Ē	95	- 20	30	373	8.00	.	-	- 10	\sim	- 32-	3	1	100	- 1 2		5.6	8.1	10.0	12.0		15.8	17.8		21.6		25.5		
(P)	96			1020114	570 <u>6</u> 11	0	3 2 3	8 20 8	5 6 5		1020104	4199 <u>4</u> 914	100200	s <u>a</u> € s	3 2 3	8 6 8	7.5	9.5	11.4	13.4	15.3	17.3	2007.075	21.2	23.2			29.0
ure	97	1.22	24	-	-	28		2	12	22		8 - 1	-	20	2	2	7.0	8.9	10.9		- 52 States -	16.8	100.022275			24.7		
at	98	34	39	3 4 3	19 - 21	46	~	2			200	64	1942	4 6	-	-	6.4	8.4	10.4	12.4	14.4	16.4	18.3					
Del	99	39	29	-	86.6	-	- 8	8			0 . 33	10 . -	80 . 6		8		5.8	7.9	9.9	11.9	13.9	15.9	2010/01/01/01			24.0		
Temperature	100	12	- 89	-	1997	. 8	. S.	S		1.5	3928		100	. 8	÷ .	- E	5.3	7.3	9.3							23.6		
Te Te		20	25	1074	1975	10	× 1	1	1	2	272	1	1	. 1 2	÷	- C.	25	6.8	8.8	10.9	12,9	15.0	12100		21.1	23.2		27.3
Dry-Bulb	i 102	37	35	273	1975	59	- T	5	10	35	252	853	353	59	5	10	87	6.2	8.3	10.4	12.4	14.5	1023518	18.6		22.8		
B	103	13	3	120	355	25	- 3	2	2	- 17	1372	855	375	- 55	3	8	32	5.7	7.8	9.9	11.9	14.0	100000			22.4		
5	3 104	- 12	32	10257	1020	20	- 2	24	-	84	12283	1020	1020	20	2	-	72	5.2	7.2	9.3	11.5	13.6	12514-001		19.9			26.3
	-	1	- 74 - J.	-		- 28		÷ .	-	1	- 1 - 0		-	3	÷ .	-	, 84		6.7	8.8		13.1			19.5			26.0
Air	106	- 29	39	24	1	-		2		3	200	(1	1	80	~		38	34	6.2	8.3	10.5	12.6	14.8	17.0	19.1	21.3		
er	107	- 29	29	3 - 3	10.00		- 8	8		2 9	3 . 3	89 . 5	89 . 65		8		6e	9 -	5.7	7.9	10.0	12.2				21.0		
us	108	27	27	3723	1975	20	- 20		1	27	272	1	1	10	2	<u> </u>	25	22	5.2	7.4	9.5	11.7	13.9	16.1	18.4	20.6		
de	109	35	35	273	355	- 59	53	53	55	35	258	353	353	- 79	53	35	33	10	1.72	6.9	9.1	11.3		15.7	18.0			1000000000000
Condenser	110	12	12	350	0.050	0.00	5.5	3 5 3	2.3	12 0	10720134	0.050.05	0.05%	5 D. 1	3 2 3	2.2.3	0.7	10 10	1072013	6.4	8.6	10.8		15.3				24.4
0	111	22	~	3 - 33		20	-	2	-		3 - 33	2 4 -1		20	-	2	84	<u></u>	5 - 83	5.9	8.1	10.4	12.6	14.9	17.2			
	112		3-	223	-	-	~	2	-		2.428	-	(-)	-	-	-	39		242	5.4	7.6	9.9	12.2	14.5		1000000000	1	
	113	29	29	-	88 . 46	-0	8	8		29	3 . -3	10 - 0	10 . +5	-	8		92 (C		3 9 39	-	7.2	9.5	11.8	14.1		18.8		23.5
	114	30	88	3 . -3	19 9 0	-	× .	2		8	200	19 1 -1	19 . -2			18	8		200		6.7	9.0	11.4	13.7				23.2
	115	22	27	373	195	10	- 20	1	- 25	27	272	1975	353	100	- 20	- E	- 25	25	372	1000	6.2	8.6	10.9	13.3	15.7	18.1	20.5	22.9

Table 1: Target Superheat (Suction Line Temperature - Evaporator Saturation Temperature) (continued)

8										Re	eturi	n Ai	r We	et-Bu	ulb (°F) ((T _{re}	turn, v	vb)				~ .					
		50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
	70	20.9	20.7	20.6	20.4	20.1	19.9	19.5	19.1	18.7	18.2	17.7	17.2	16.5	15.9	15.2	14.4	13.7	12.8	11.9	11.0	10.0	9.0	7.9	6.8	5.7	4.5	3.2
return,	71	21.4	21.3	21.1	20.9	20.7	20.4	20.1	19.7	19.3	18.8	18.3	17.7	17.1	16.4	15.7	15.0	14.2	13.4	12.5	11.5	10.6	9.5	8.5	7.4	6.2	5.0	3.8
	72	21.9	21.8	21.7	21.5	21.2	20.9	20.6	20.2	19.8	19.3	18.8	18.2	17.6	17.0	16.3	15.5	14.7	13.9	13.0	12.1	11.1	10.1	9.0	7.9	6.8	5.6	4.3
E	73	22.5	22.4	22.2	22.0	21.8	21.5	21.2	20.8	20.3	19.9	19.4	18.8	18.2	17.5	16.8	16.1	15.3	14.4	13.6	12.6	11.7	10.6	9.6	8.5	7.3	6.1	4.8
(°F)	74	23.0	22.9	22.8	22.6	22.3	22.0	21.7	21.3	20.9	20.4	19.9	19.3	18.7	18.1	17.4	16.6	15.8	15.0	14.1	13.2	12.2	11.2	10.1	9.0	7.8	6.6	5.4
	75	23.6	23.5	23.3	23.1	22.9	22.6	22.2	21.9	21.4	21.0	20.4	19.9	19.3	18.6	17.9	17.2	16.4	15.5	14.7	13.7	12.7	11.7	10.7	9.5	8.4	7.2	5.9
-Bulb ^{db})	76	24.1	24.0	23.9	23.7	23.4	23.1	22.8	22.4	22.0	21.5	21.0	20.4	19.8	19.2	18.5	17.7	16.9	16.1	15.2	14.3	13.3	12.3	11.2	10.1	8.9	7.7	6.5
n (a	77	82	24.6	24.4	24.2	24.0	23.7	23.3	22.9	22.5	22.0	21.5	21.0	20.4	19.7	19.0	18.3	17.5	16.6	15.7	14.8	13.8	12.8	11.7	10.6	9.5	8.3	7.0
	78	85	85	8 83	24.7	24.5	24.2	23.9	23.5	23.1	22.6	22.1	21.5	20.9	20.2	19.5	18.8	18.0	17.2	16.3	15.4	14.4	13.4	12.3	11.2	10.0	8.8	7.6
Dry	79	- 32	32	3 <u>0</u> 23	828	122	24.8	24.4	24.0	23.6	23.1	22.6	22.1	21.4	20.8	20.1	19.3	18.5	17.7	16.8	15.9	14.9	13.9	12.8	11.7	10.6	9.4	8.1
Air	80	æ.,	-	-	1.00			25.0	24.6	24.2	23.7	23.2	22.6	22.0	21.3	20.6	19.9	19.1	18.3	17.4	16.4	15.5	14.4	13.4	12.3	11.1	9.9	8.7
	81	15	- 15 ^{- 10}	1.0	1.52	1		5	25.1	24.7	24.2	23.7	23.1	22.5	21.9	21.2	20.4	19.6	18.8	17.9	17.0	16.0	15.0	13.9	12.8	11.7	10.4	9.2
n	82	82	82	240	12	23	Ш. Ш	2	-32	25.2	24.8	24.2	23.7	23.1	22.4	21.7	21.0	20.2	19.3	18.5	17.5	16.6	15.5	14.5	13.4	12.2	11.0	9.7
Return	83	-	<u>.</u>		3 2	-2		-		2	25.3	24.8	24.2	23.6	23.0	22.3	21.5	20.7	19.9	19.0	18.1	17.1	16.1	15.0	13.9	12.7	11.5	10.3
	84	-32	- 32	3 <u>4</u> 3	828	- 122	2	2	<u></u>	32	25.9	25.3	24.8	24.2	23.5	22.8	22.1	21.3	20.4	19.5	18.6	17.6	16.6	15.6	14.4	13.3	12.1	10.8

Table 2: Target Temperature Split (Return Dry-Bulb - Supply Dry-Bulb)