

Habitat for Humanity of Metro Denver

Energy Efficient Building Association Building Science Consortium Building Science Consortium

Present

U.S. Department of Energy

Architecture and Building Science

An Advanced Systems **Engineering Approach** to Affordable Single **Family Homes**

Overall System Improvements

- Advanced Framing System
 - 2 x 6 24" o.c., O.V.E., insulating sheathing
- Air Flow Retarder System
 - Interior and Exterior
- Thermal Envelope System
 - 48% better than the 1993 Model Energy Code (current code required in Colorado)

• Air Distribution System

- Innovative ductwork and ductwork location
- Mechanical Systems
 - Integration of ventilation and heating system

Overall Performance Goals

- Energy Consumption
 - The house will use 48% LESS BTU's

than a like sized reference house that meets the 93 MEC for the location (current code required in Colorado)

Pollutant Control

- Controlled Mechanical Ventilation
 - (@ 10cfm per person/occupancy based on # of BR + 1, i.e. 3BR House=50CFM)
- Source Control (dry foundations, combustion safety)

• Envelope Leakage

Less than 2.5 sq. in. of leakage area per 100 sq. ft. of envelope surface area (CGSB @ 10 Pa)

• Durability

Designed to reduce wetting and designed to dry should it get wet

Hahita

Building Science Consortium

Architecture and Building Science

U.S. Department of Energy

House Design Type

2000

Advantages to Homeowner

- Healthier interior living environment
- More durable home
- More comfortable home
- Predictable lower utility bills
- Allows innovative marketing & financing (EEM mortgages, etc.)

Advanced Framing System

Framing Plan

- Use 2x6 @ 24" o.c. with stack framing
- Most efficient use of wood as a structural system-reduces waste
- Allows more wall depth for additional insulation than 2x4 @ 16" o.c.
- Reduces thermal bridging of wall elements (total percentage of framing thermal bridge goes down from 20% to 10%)

Habitat Yr ^{for}Humanity

Building Science Consortium

Architecture and Building Science

U.S. Department

of Energy

Building AMERICA

2000

Advanced Framing System

- Insulated headers
- No header necessary at non-bearing walls

• Exterior

Air Flow Retarder System

(2) ¹/₂" layers of XPS insulating sheathing - seams staggered horizontally and vertically, and taped

Architecture and Building Science

U.S. Department of Energy

Building AMERICA

Air Flow Retarder System

Complete air sealing package **Building Science Consortium** at rim closure

U.S. Department of Energy

Building AMERICA

Air Flow Retarder System

• Interior

– ADA

Air Drywall Approach

• drywall glued to top and bottom plate

Architecture and Building Science

U.S. Department of Energy

energy ar

Building

October 2000

Air Flow Retarder System

- Foundations
 - Gasket at sill plate connections to foundation
 - Sealant at slab foundation wall intersection

PR-0003: An Advanced Systems Engineering Approach to Affordable Single Family Homes

Air Flow Retarder System

Airtight electrical boxes

Rooms oriented east to west have good ventilation but are difficult to shade

Daylighting System

daylighting and passive ventilation

Windows placement for optimal

Staggering rooms or using wing walls increases ventilation through rooms oriented north to south

Water Management System

- High performance windows with Low-E insulating glass
 - Sill wrapped with membrane for moisture protection

5/4 trim

October 2000

- 2 x 6 @ 24" oc walls allow for increased wall insulation
- Less thermal bridging (Fewer

framing members)

October 2000 • Increase truss depth for roof insulation

Thermal Envelope System

• Conditioned crawl space walls insulated with 2" EPS (R-7)

Foundation System

- Construction techniques that keep the wall dry and the crawlspace mold free
 - Final grade slopes away from foundation wall
 - 3' wide perimeter of mulch with drought-resistant plantings
 - Damp-proofing around exterior perimeter of wall

Architecture and Building Science

U.S. Department of Energy

Building

Foundation System

 Construction techniques that keep the wall dry and the crawlspace

mold free

Capillary break between foundation wall and mud sill

Architecture and Building Science

U.S. Department of Energy

Foundation System

- Construction techniques that keep the wall dry and the crawlspace mold free
 - Insulating sheathing increases the temperature of the first condensing surface
 - 1/4" cementitious thermal barrier contains no media for mold growth

October 2000

Building AMERICA

Architecture and Building Science

U.S. Department of Energy

Building

Foundation System

- Construction techniques that keep the wall dry and the crawl space mold free
 - Continuous exhaust
 fan draws down
 conditioned air from
 the house

Building Science Consortium Architecture and Building Science

Building

Foundation System

 Crawl space is CONDITIONED with air from the house, not flushed with outside air as a typical VENTED crawlspace

Foundation System

 Constant exhaust from the crawlspace acts as soil gas and radon reduction system

2000

Air Distribution System

- Innovative ductwork system
- Ductwork located inside of the building envelope (i.e. not in vented attics, exterior walls, attached garages)

Building

Building Science Consortium Architecture and Building Science

> U.S. Department of Energy

Air Distribution System

• All bedrooms have transfer grilles through to hallways for pressure equalization or return ducts

October 2000

Air Distribution System

Architecture and Building Science

U.S. Department of Energy

Mechanical System

- 92% efficient closed combustion furnace
- Building Science Consortium **Furnace located within the** • conditioned space
 - Products of combustion vented directly to the outside

U.S. Department of Energy

Mechanical System

- 61% EF Hot water heater
- Located within the building envelope
- Combustion products are vented directly to the outside

- Ventilation Scheme
 - Outside air is supplied through a 6" insulated duct to the central return.

Building Science Consortium Architecture and Building Science Building **U.S. Department** of Energy October

2000

Mechanical System

- Ventilation Scheme
 - "AirCyclerTM" control brings in outside air periodically even when the air handler is not on

2000

Mechanical System

- Ventilation Scheme (con't)
 - Continuous exhaust through the crawl space
- Intermittent point source exhaust
 - High performance, quiet (low-sone) Panasonic fans in all baths and kitchen

