

presents

Building Science with Structural Insulated Panels (SIPs)

2008 NAHB National Green Building Conference May 12, 2008 - New Orleans

SIPA Structural Insulated Panel Association

The Structural Insulated Panel Association (SIPA) is a nonprofit trade association representing manufacturers, suppliers, fabricators/distributors, design professionals, and builders committed to providing quality structural insulated panels for all segments of the construction industry.

More information about SIPA can be found at: www.sips.org

Copyright 2008 Building Science Corporation Copyright 2008 SIPschool

This presentation is available at

www.buildingscienceseminars.com/presentations www.sipschool.org/ (home page)

Introduction

Alex Lukachko, Associate alex@buildingscience.com Building Science Corporation 30 Forest Street, Somerville, MA www.buildingscience.com

Al Cobb, President

al@sipschool.org SIPschool 808 French Road, Shenandoah Junction, WV www.sipschool.org

NAHB National Green Building Conference May 12, 2008 Alex Luberthing for this session

- 1. SIPs and Green Building
- 2. Building Science for SIPs
 - We will review theory and details for SIPs construction, including:
 - drainage planes and claddings
 - vapor control
 - vented and unvented roofs
 - HVAC for airtight, energy-efficient buildings
- 3. SIPs and green building rating tools

Please ask questions at any time

Building Science with Structural Insulated Panels (SIPs)

ABOUT SIPS CONSTRUCTION

Building Science with Structural Insulated Panels (SIPs)

SIPS AND GREEN BUILDING

SIPs and Green Building

SIPs material properties: -low embodied energy -efficient use of wood -reduced construction waste -low VOC emission

SIPs system properties: -excels in energy efficiency, durability, indoor environmental quality

Theory: Enclosure Design

Historical changes

 More airtight, less energy 'flow,' less moisture tolerance, changing conditions of use

Performance goals

Comfortable, Healthy, Durable, Resource Efficient
Enclosure requirements

- Control Heat, Air, Moisture (rain, vapor, soil)
 - Heat continuous layer of insulation
 - Air continuous air barrier
 - Moisture drainage plane, capillary breaks

Building Science with Structural Insulated Panels (SIPs)

BUILDING SCIENCE FOR SIPS

Building Science with Structural Insulated Panels (SIPs)

RAIN CONTROL

Concept: Layering Materials to Shed Water

Drain the Building

Drained and Ventilated Cladding

NAHB National Green Building Conference May 12, 2008 Alex L**ikeontha Annerica Average Annual Rainfall**

Cladding Types and Drainage Gap

Provide Drainage Plane and Drainage Gap

Wood and Fiber Cement Siding

-install over a 1/4-inch (6mm) spacer strip over a water resistive barrier

Cedar Shingles, Traditional Stucco, and Manufactured Stone Veneer

-install over 3/8-inch (9mm) drainage mat over a water resistive barrier

Vinyl or Aluminum Siding is inherently back-ventilated

Drained and Ventilated Cladding

Water Managed Wall - Brick Veneer

Water resistive _____

Copyright 2008 Building Science Corporation Copyright 2008 SIPschool

Building Science with Structural Insulated Panels (SIPs)

VAPOR CONTROL

Higher Dewpoint Temperature Higher Vapor Density or Concentration (Higher Vapor Pressure) on Warm Side of Assembly

Diffusion vs. Air Leakage

Air Pressure and Vapor Pressure

Theory: Diffusion vs. Air Leakage

Outward and Inward Drying

Water Vapor Resistance of OSB and Plywood

NAHB National Green Building Conference May 12, 2008 Alex Lukeows ew raps and Building Papers

Painted Gypsum Board

Vapor Control Code Language

The 2007 Supplement to the IRC currently defines vapor retarders under three classes:

Class I: 0.1 perm or less

(Sheet polyethylene, non-perforated aluminium foil)

Class II: 0.1 perm <= 1.0 perm

(Kraft faced fiberglass batts) [SIP wall panel]

Class III: 1.0 perm <= 10 perm

(Latex or enamel paint)

Copyright 2008 Building Science Corporation Copyright 2008 SIPschool

Applicable Code Sections

2006 International Residential Code for One and Two-Family Dwellings

- R202 Vapor Retarder
- N1102.5 Moisture Control

2007 Supplement to the 2006 International Residential Code for One and Two-Family Dwellings

- R202 Vapor retarder Class
- N1102.5 Vapor retarders
- N1102.5.1 Class III vapor retarders
- N1102.5.2 Material vapor retarder class

Building Science with Structural Insulated Panels (SIPs)

VENTED AND UNVENTED ROOFS

SIP Roof – Conditioned Attic Space

Theory: Vented and Unvented Roof Design

Either vented ("cold roof") or unvented ("hot roof")

Why vent?

- Cold climates: cold roof surface to control ice dams, vent moisture
- Hot climates: expel solar heated air to reduce cooling

Other issues

- Roof complexity makes venting difficult
- HVAC system components

Applicable Code Sections

- 2006 International residential Code for One- and Two-Family Dwellings
- R806.1 Ventilation required
- R806.2 Minimum area
- R806.3 Vent and insulation clearance
- R806.4 Conditioned attic assemblies

2007 Supplement to the International Residential Code

- R806.4 Unvented attic assemblies
- Table R806.4 Insulation for condensation control

Copyright 2008 Building Science Corporation Copyright 2008 SIPschool

NAHB National Green Building Conference May 12, 2008 Alex L Gareen Building Rating Programs

NAHB Green Building Standard

- 2.1.6 Use pre-cut or pre-assembled building systems or methods (12 points)
- 3.3.1 Building Envelope SIPS (8 points)

Also

- Framing plans, layout
- Resource efficiency
- Airtightness and insulation
- HVAC design

Other programs also give credit for SIP construction

Building Science with Structural Insulated Panels (SIPs)

RESOURCES

Online Resources

New Builder's Guide to Structural Insulated Panels (SIPs)

Available at the SIPA Store - www.sips.org

Copyright 2008 Building Science Corporation Copyright 2008 SIPschool

This presentation is available at

www.buildingscienceseminars.com/presentations www.sipschool.org/ (home page) General Building Science www.buildingscience.com About SIPs and SIPs Construction www.sips.org www.sipschool.org High-performance building in Louisiana LSU's AgCenter "LaHouse" - www.louisianahouse.org

Alex Lukachko, Associate alex@buildingscience.com Building Science Corporation 30 Forest Street, Somerville, MA www.buildingscience.com

Al Cobb, President al@sipschool.org

SIPschool 808 French Road, Shenandoah Junction, WV www.sipschool.org