

Building Science

Build Tight - Ventilate Right

Build Tight - Ventilate Right How Tight? What's Right?

Best

Building Science Corporation

Building Science Corporation

As Tight as Possible* - with -Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration Material selection *Enclosure

Building Science Corporation

Air Barrier	Metrics	
Material Assembly Enclosure	0.02 l/(s-m2) @ 75 Pa 0.20 l/(s-m2) @ 75 Pa 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa	
Building Science Corporation		Joseph Lstiburek 5

Barriers - Policy	ASHRAE 62.2 HERS/RESNET
Barriers - Technology	ECM Supplemental Dehumid
Barriers - Cost	Exhaust \$100 Exhaust + Dist \$150 Supply + Dist \$150 Spot + Ex/Sup + Dist \$450 Balanced/ER \$1,000
Building Science Corporation	Joseph Lstiburek 6

Q(v)	= Ventilation Rate	
Q(fan) C(d)	= Q(v) • C(d) = Distribution Coefficient	
Building Science Corporati	ion	Joseph Lstiburek 8

System Type		Distribution Coefficient (Ca)
Balanced ventilation, with central forced air distri ventilation system	bution system or a fully ducted	1.0
Unbalanced ventilation (Supply or exhaust), with system having a minimum run time of 10 minutes	central forced air distribution per hour	1.25
Unbalanced ventilation (Supply or exhaust), with system or multi-point exhaust or supply	central forced air distribution	1.5
All other systems		1.75

Modeling Assumptions: Weather

- 1. Temperature
 - 1. Outdoor temperature from TMY2 data
 - 2. Indoor temperature constant at 72 C (with minor variation between rooms)
- 2. Wind

Building Science Corporation

- 1. Wind speed and direction from TMY2 data
- 2. Wind shielding model and modifiers as described in ASHRAE Fundamentals 2005 Chapters 16 and 27 for typical suburban surroundings

Model Assumptions: Air Handler

- 1. Sizing per Manual J for each climate
- 2. Duty cycle each hour based on
 - temperature and design temperature for the climate
 - 1. Maximum 80% runtime at design conditions
 - 2. Heating balance point = 65 F
 - 3. Cooling balance point = 75 F
- 3. Two cycles per hour

Building Science Corporation

 Cycles rounded to nearest 5 minute increment (simulation time step = 5 minutes)

©2008 buildingscience.com

Model Assumptions: Envelope Leakage

- 1. Distribution
 - 1. Leakage distribution per ASHRAE
 - Fundamentals Chapter 27
 - 1. Walls, windows, doors: 62%
 - Ceilings & nonoperating exhaust vents: 23%
 Ducts: 15%
- 2. Total leakage varied as described later

Building Science Corporation

2. Can be scaled as desired

Model Assumptions: Pollutant Generation

each room

1. Uniform generation of unique pollutant in

1. Generation rate arbitrarily set at 1 mg/hr/sf

Model Assumptions: Occupant Schedules
Assume similar schedule for each occupant:

10 PM to 7 AM: in bedroom with door closed
7 AM to 9 AM: in kitchen
9 AM to 12 PM: in living room
12 PM to 1 PM: in kitchen
1 PM to 6 PM: in living room
6 PM to 10 PM: in other bedrooms

Bedroom doors open except during sleeping period 10 PM to 7 AM

Building Science Corporation

neu i arameters

- 1. Climate
- 1. Minneapolis, Seattle, Phoenix
- 2. Envelope leakage
- 1. 1.5, 3.5, 7 ACH50 3. Central AHU System
 - Not present, in conditioned space, outside of conditioned space
- AHU Schedule
 Standard Tstat, Tstat with minimum runtime (10 minutes per half-hour)

5. Duct Leakage

- 1. 6% & 12% of air handler flow

Building Science Corporation

Varied Parameters 6. Ventilation System 1. Single-point exhaust 2. Single-point supply 3. Dual-point balanced 4. Fully-ducted balanced 7. Ventilation Rate 1. 0, 50, 100, 150% of current 62.2 rate

rek 37

System Type	Range	Approxim Median
Fully ducted balanced ventilation system, with or without central duct system	1.0	1.0
Non-fully ducted balanced ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	0.9 to 1.1	1.0
Supply ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	1.1 to 1.7	1.25
Exhaust ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	1.1 to 1.9	1.25
Exhaust ventilation, with central duct system, and central air handler unit not controlled to a minimum runtime of at least 10 minutes per hour	1.0 to 1.8	1.5
Supply ventilation, without central duct system	1.4 to 1.9	1.75
Exhaust ventilation, without central duct system	1.3 to 2.6	2.0

ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.01 cfm per square foot of conditioned area
Occupancy is deemed to be the number of bedrooms plus one

Occupant Rate + Building Rate

Q(v)	= Ventilation Rate	
Q(fan) C(d)	= Q(v) • C(d) = Distribution Coefficient	
Building Science Corporation	on	Joseph Lstiburek 51