

Why (Rest of Us)? Risk-Health Comfort Durability

Build Tight - Ventilate Right

Build Tight - Ventilate Right How Tight? What's Right?

Building Science Corporation

Joseph Lstiburek 5

Building Science Corporation

Joseph Lstiburek 6

Best

As Tight as Possible - with -

Balanced Ventilation

Energy Recovery

Distribution

Source Control - Spot exhaust ventilation

Filtration

Material selection

Air Barrier Metrics

Material 0.02 l/(s-m2) @ 75 Pa

Assembly 0.20 l/(s-m2) @ 75 Pa

Enclosure 2.00 l/(s-m2) @ 75 Pa

0.35 cfm/ft2 @ 50 Pa

0.25 cfm/ft2 @ 50 Pa

0.15 cfm/ft2 @ 50 Pa

Building Science Corporation

Joseph Lstiburek 7

Building Science Corporation

Barriers - Policy ASHRAE 62.2

HERS/RESNET

Barriers - Technology ECM

Supplemental Dehumid

Barriers - Cost Exhaust \$100

Exhaust + Dist \$150

Supply + Dist \$150

Spot + Ex/Sup + Dist \$450

Balanced/ER \$1,000

Building Science Corporation

Joseph Lstiburek 9

ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.01 cfm per square foot of conditioned area

Occupancy is deemed to be the number of bedrooms plus one

Occupant Rate + Building Rate

Building Science Corporation

Joseph Lstiburek 10

Q(v) = Ventilation Rate

 $Q(fan) = Q(v) \cdot C(d)$

C(d) = Distribution Coefficient

System Type	Distribution Coefficient (C _d)
Balanced ventilation, with central forced air distribution system or a fully ducted ventilation system	1.0
Unbalanced ventilation (Supply or exhaust), with central forced air distribution system having a minimum run time of 10 minutes per hour	1.25
Unbalanced ventilation (Supply or exhaust), with central forced air distribution system or multi-point exhaust or supply	1.5
All other systems	1.75

- Tracer gas test of a production house in Sacramento
- 2-story, 4 bedrooms, ~2500 square feet
- Ventilation systems tested: supply and exhaust ventilation, with and without mixing via central air handler

Building Science Corporation

Building Science Corporation

Joseph Lstiburek 13

Joseph Lstiburek 15

Floor Plan - 2 Story House

Building Science Corporation

Joseph Lstiburek 14

Example Results of Tracer Gas Testing

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, No Mixing

Example Results of Tracer Gas Testing

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, 33% Mixing

Building Science Corporation

Example Results of Tracer Gas Testing

Conclusions From Tracer Gas Testing

- Mixing is very important to whole-house and individual zone pollutant decay rate
- Supply ventilation is slightly more effective than exhaust ventilation, even with mixing
- The location of a single-point ventilation system affects the performance

Building Science Corporation

Joseph Lstiburek 18

Tuned CONTAM Model

Computer modeling used to replicate field testing (tune the model) and predict performance of systems not tested in the field

Example Results of Tuned CONTAM Model

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, No Mixing

Building Science Corporation

Example Results of Tuned CONTAM Model

Laundry Exhaust, 100% of 62.2 Rate, Doors Closed, 33% Mixing

Building Science Corporation

Joseph Lstiburek 21

Example Results of Tuned CONTAM Model

Reciprocal Age of Air (1/hr)

0.23

0.22

0.21

0.22

0.22

0.21

Measured

0.19

0.20

0.20

0.20

0.19

Building Science Corporation

11:30 PM

10

BR1

Living

Kitchen

BR2

BR3

MBR

Joseph Lstiburek 22

11:30 AM

9:30 AM

Tuned CONTAM Model Applied to Other Systems

Six Systems Evaluated & Compared:

- Exhaust ventilation, without central duct system
- 2. Supply ventilation, without central duct system
- 3. Exhaust ventilation, with central ducts, standard Tstat
- 4. Exhaust ventilation, with central ducts, Tstat with timer
- 5. Supply ventilation, with central ducts, Tstat with timer
- Fully ducted balanced ventilation system, without central duct system

Indoor and Outdoor Temperature Sacramento, April 13

5:30 AM

7:30 AM

(generally not possible in field tests).

©2008 Building Science Corporation

Results of Tuned CONTAM Model

Building Science Corporation

Joseph Lstiburek 25

Results of Tuned CONTAM Model

Supply Ventilation, No Central System 100% of 62.2 Rate

Building Science Corporation

Joseph Lstiburek 26

Results of Tuned CONTAM Model

Exhaust Ventilation, Central AHU w/ Standard Tstat 100% of 62.2 Rate

Building Science Corporation

Joseph Lstiburek 27

Results of Tuned CONTAM Model

Exhaust Ventilation, Central AHU w/ Tstat and Timer 100% of 62.2 Rate

Building Science Corporation

Results of Tuned CONTAM Model

Supply Ventilation (CFI), Central AHU w/ Tstat and Timer 100% of 62.2 Rate

Building Science Corporation

Joseph Lstiburek 29

Results of Tuned CONTAM Model

Balanced Ventilation, No Central System 100% of 62.2 Rate

Building Science Corporation

Joseph Lstiburek 30

Adjusting Ventilation Rate to Achieve Equivalent Performance

Exhaust Ventilation, No Central System 100% of 62.2 Rate

Building Science Corporation

Joseph Lstiburek 31

Adjusting Ventilation Rate to Achieve Equivalent Performance

Building Science Corporation

Joseph Lstiburek 33

Adjusting Ventilation Rate to Achieve Equivalent Performance

Adjusting Ventilation Rate to Achieve Equivalent Performance

Adjusting Ventilation Rate to Achieve Equivalent Performance

Conclusions from Tuned CONTAM Model

- 1. Ventilation systems do not perform equally just because they have equal nominal airflow
- Airflow requirements can be adjusted based on performance of each system

Building Science Corporation

Extending the Modeling

- Comparison of 1 day in 1 house in 1 climate is useful but needs to be expanded before establishing general guidelines.
- 2. Expand modeling from 1 day in 1 house in 1 climate to:
 - 1. Full-year
 - Various house characteristics (envelope leakage, mechanical systems, etc)
 - 3. Different climates
- 3. Methodology of simulations changed from decay to exposure
 - 1. Uniform generation of pollutant within house
 - 2. Assumed occupancy schedule
 - 3. Calculated occupant exposure based on concentration in the zone where they are each hour

Building Science Corporation

Joseph Lstiburek 37

Modeling Assumptions: Weather

1. Temperature

- 1. Outdoor temperature from TMY2 data
- 2. Indoor temperature constant at 72 C (with minor variation between rooms)

2. Wind

- 1. Wind speed and direction from TMY2 data
- Wind shielding model and modifiers as described in ASHRAE Fundamentals 2005 Chapters 16 and 27 for typical suburban surroundings

Building Science Corporation

Joseph Lstiburek 38

Model Assumptions: Air Handler

- 1. Sizing per Manual J for each climate
- 2. Duty cycle each hour based on temperature and design temperature for the climate
 - 1. Maximum 80% runtime at design conditions
 - 2. Heating balance point = 65 F
 - 3. Cooling balance point = 75 F
- 3. Two cycles per hour
 - 1. Cycles rounded to nearest 5 minute increment (simulation time step = 5 minutes)

Model Assumptions: Envelope Leakage

1. Distribution

- Leakage distribution per ASHRAE Fundamentals Chapter 27
 - 1. Walls, windows, doors: 62%
 - 2. Ceilings & nonoperating exhaust vents: 23%
 - 3. Ducts: 15%
- 2. Total leakage varied as described later

Building Science Corporation

Building Science Corporation

Model Assumptions: Pollutant Generation

- Uniform generation of unique pollutant in each room
 - 1. Generation rate arbitrarily set at 1 mg/hr/sf
 - 2. Can be scaled as desired

Building Science Corporation

Joseph Lstiburek 41

Model Assumptions: Occupant Schedules

- 1. Assume similar schedule for each occupant:
 - 1. 10 PM to 7 AM: in bedroom with door closed
 - 2. 7 AM to 9 AM: in kitchen
 - 3. 9 AM to 12 PM: in living room
 - 4. 12 PM to 1 PM: in kitchen
 - 5. 1 PM to 6 PM: in living room
 - 6. 6 PM to 10 PM: in other bedrooms
- Bedroom doors open except during sleeping period 10 PM to 7 AM

Building Science Corporation

Joseph Lstiburek 42

Varied Parameters

- 1. Climate
 - 1. Minneapolis, Seattle, Phoenix
- 2. Envelope leakage
 - 1. 1.5, 3.5, 7 ACH50
- 3. Central AHU System
 - 1. Not present, in conditioned space, outside of conditioned space
- 4. AHU Schedule
 - 1. Standard Tstat, Tstat with minimum runtime (10 minutes per half-hour)
- 5. Duct Leakage
 - 1. 6% & 12% of air handler flow

Varied Parameters

- 6. Ventilation System
 - 1. Single-point exhaust
 - 2. Single-point supply
 - 3. Dual-point balanced
 - 4. Fully-ducted balanced
- 7. Ventilation Rate
 - 1. 0, 50, 100, 150% of current 62.2 rate

Building Science Corporation

Joseph Lstiburek 43

Building Science Corporation

Simulation Tools

- CONTAM Factorial
- CONTAM 2.4b
- CONTAM SimRead

Building Science Corporation

Joseph Lstiburek 45

Total Pollutant Concentration by Room

Building Science Corporation

Joseph Lstiburek 46

Exposure Calculation

- Yearly average hourly exposure
- Sum of pollutant concentration in the zone occupied by the occupant each hour of the year, divided by 8760 hr/yr

Building Science Corporation

Joseph Lstiburek 47

Building Science Corporation

Reference System

- Best available system: fully ducted, balanced ventilation system
- Compare other systems to this system: what ratio of airflows do other systems need to provide equal yearly average exposure?

Building Science Corporation

Building Science Corporation

Joseph Lstiburek 49

Joseph Lstiburek 51

Building Science Corporation

Joseph Lstiburek 50

Airflow Ratios—All Simulations

System Type	Range	Approximate Median
Fully ducted balanced ventilation system, with or without central duct system	1.0	1.0
Non-fully ducted balanced ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	0.9 to 1.1	1.0
Supply ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	1.1 to 1.7	1.25
Exhaust ventilation, with central duct system, and central air handler unit controlled to a minimum runtime of at least 10 minutes per hour	1.1 to 1.9	1.25
Exhaust ventilation, with central duct system, and central air handler unit not controlled to a minimum runtime of at least 10 minutes per hour	1.0 to 1.8	1.5
Supply ventilation, without central duct system	1.4 to 1.9	1.75
Exhaust ventilation, without central duct system	1.3 to 2.6	2.0

Building Science Corporation

©2008 Building Science Corporation

ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.01 cfm per square foot of conditioned area

Occupancy is deemed to be the number of bedrooms plus one

Occupant Rate + Building Rate

Recommended Range of Relative Humidity
25 percent during winter
60 percent during summer

