

John Straube, Ph.D., P.Eng

Basements: New & Retrofit

Energy Efficient, Durable, Healthy

Building Science Corporation

presented by www.buildingscience.com

This presentation

- · Basement functions
- Basement Performance
 - Problems
 - Causes
- Solutions

www.BuildingScience.com

• Crawlspaces & Slabs next session

Basements are Changing

- · Increasingly used as living space
 - Not a root /coal cellar anymore!
 - High quality space expected new and retrofit
 - Owner can finish herself

www.BuildingScience.com

- Low cost for high density sites (cities)
- Can now locate laundry, heating, hotwater elsewhere
- Modern basements are different they need different approaches!
- · Commercial basements are similar

Basements – Part of the Enclosure

Basements No. 2/73

Basements No. 3/73

Basements No. 5/73

Basements

- Below grade enclosure
 - Includes floor slabs,
 - practically need to include transition
 - Separates exterior (soil/air) and interior
- Functions of all parts of the enclosure
 - Support
 - Control

www.BuildingScience.com

- Finish (usually)

Building Enclosure Functions

- Support
 - Structure: wind, gravity, earthquake
 - Below grade Soil pressure, hydrostatic?
- Control

www.BuildingScience.com

- Heat (less extreme than above grade)
- Air (less air pressure, but it stinks, Radon?)
- Moisture (vapor, free and bound liquid)
- Finish usually, but optional
- Distribute (sometimes)

Control: Moisture

- Mold (musty basement smell)
- Decay (especially rim joist)
- Staining /Paint peeling
- Floods and leaks, eventually causing the above
- Salt damage to masonry old basements
- · Where does moisture come from?
 - 1. Exterior
 - 2. Built in
 - 3. Interior

www.BuildingScience.com

Basements No. 8/73

Basements No. 6/73

Basement Enclosure Strategies

- Classification of Groundwater control
 - 1. Drained
 - Needs capillary break and gap/drain space
 - -2. Perfect Barrier ("waterproofing")
 - One layer of perfect water resistance
 - Beware hydrostatic forces
 - 3. Storage (mass)
 - Safe storage capacity and <u>drying</u>
 - Don't use vapor barriers, do insulate (carefully)

```
www.BuildingScience.com
```


Storage (1) Below-Grade Enclosure Wall System

Controlling ground/rain water

Review: Exterior Moisture

- Deflection: Roof and Surface Drainage
- Classification of Groundwater control
 - 1. Drained
 - Needs capillary break & gap/drain space
 - 2. Perfect Barrier
 - One layer of perfect water resistance
 - Beware hydrostatic forces
 - 3. Storage (mass)
 - Safe storage capacity and <u>drying</u>
 - Don't use vapor barriers, do insulate (carefully)
- Drying to Inside and Perimeter Drains

3. Interior Moisture Sources

Vapor failure- not ground water

Appendix V

Basements No. 33/73

Managing Air and vapor

· Need to solve

www.BuildingScience.com

- Surface condensation
 - Sol'n: Keep surface warm & air dry
- Interstitial condensation
 - · Control air/vapor flow to cold surfaces & dry air
- Solar driven summer condensation
 - · Allow vapor flow in, slow rate of flow

Context: Below-grade Conditions

- Exterior soil is almost always at 100%RH
 Plus liquid water can press against wall
- · Never gets as cold or as hot as above grade

Basements No. 34/73

- Significant vertical temperature gradients
 - Top is different than bottom

Soil Temperatures

Basement Psychrometrics

Basement Vapor Diffusion

- · Water vapor is moving from soil to interior
 - for almost the entire year
 - over all but the top foot of basement
- · Hence, should place vapor barrier on outside
- But we put it on the inside!

www.BuildingScience.com

• Moisture from drying concrete, air leakage, wicking and soil also trapped by interior vapor barriers

Basements No. 40/73

Appendix V

Air & Vapor Wetting Sources

· Problems with fibrous insulation & vapor barrier

Basement Wall Air Movement

• Water vapor moves along with airflow

Basements No. 44/73

- If moist air touches a cold surface, condensation occurs
 - Summer and winter problem
- Control?

- Include an air barrier
- Avoid air loops
- Manage pressures

Internal Stack Effect

Problems w/ air permeable insulation

Materials to use?

- Foam Board: EPS, XPS, PIC
 - water tolerant
 - vapour barriers to vapour retarders
- · spray foam
 - Semi-rigid (Icynene) and rigid (Spray polyurethane)
 - airtight
 - May allow some drainage
 - R values of 4 to 6/inch
 - vapour semi-permeable (Icynene much more)

www.BuildingScience.com

Insulated Concrete Forms (ICF)

- If you afford it, use them
 - cap break,
 - insulation,
 - vapor retarder,
 - above grade

www.BuildingScience.com

Basements No. 59/73

Appendix V

Basements No. 58/73

Slabs

- Keep warm (comfort & condensation)
- Control wicking and diffusion
- · Make softer

www.BuildingScience.com

Consider floods

OSB over heavy poly dimple sheet vapor barrier and some insulation

Basements No. 73/73

Conclusions

- Building in a hole in the ground is hard
- Don't forget about built-in moisture – and remember summer
- Moisture comes in liquid AND vapor
- Insulation and drainage are the best tools, not vapor barriers and waterproofing