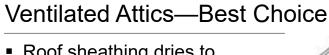
Kohta Ueno

Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

February 24, 2020


1

Background

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

Roof sheathing dries to ventilated attic-moisture safe

Interior moisture (air leaks) ventilated away in winter

Air sealing at ceiling critical for best performance

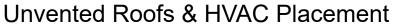
• (e.g., spray foam air barrier, detail with sealant)

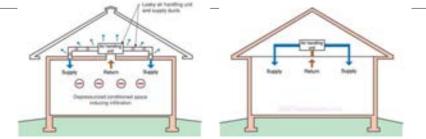
in Sealed Research

© buildingscience.com

3

Then Why Unvented Roofs?

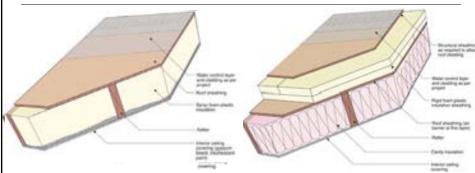

- Living space built into roof
- Vented cathedral assemblies often poor performance
- Complicated rooflines, hip geometries—how to vent?
- Unworkable air barrier at ceiling line
- Blown-in rain (coastal)
- Hurricane tear-off
- HVAC in vented attic



RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

- Ducts in unconditioned attic = huge energy losses
 - Industry reluctant to move ducts out of attic
 - Ice dam issues due to duct losses
- Solution: bring ducts into conditioned space
- Unvented/conditioned attic—keeps ductwork in conditioned space, duct leak issues eliminated



RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

5

Spray Foam/Exterior Insulation Roofs

- 2009 IRC: R806.4 Unvented attic assemblies
- Minimum R-value of "air impermeable insulation"
 - Actually ratio of R-values (BSI-100 Hybrid Assemblies)
- Nail base needed with rigid foam on roof deck

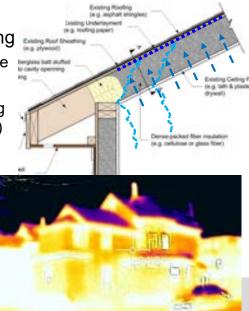
RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

Fibrous Insulation Unvented Roofs

- Dense pack insulation of unvented roofs common in cold-climate retrofits
 - Moisture risks (see BSI-043 "Don't Be Dense— Cellulose and Dense-Pack Insulation")—2 in 10 failure?
 - Violates I-codes (see IRC § R806.4/R806.5)

"Ridge rot"—localized problems (SIPS same problem)



7

Why Unvented + Fibrous Risky?

- Different than walls?
- Moisture risks at sheathing
 - Interior-sourced air leakage
 - Vapor contributing too?
 - Zero-perm exterior ("wrong side perfect vapor barrier")
 - Night sky radiation cooling
 - Stack effect in winter
 - "Ridge rot" (thermal and moisture buoyancy)

RESNET 2020: Energy and Insulated Attics: (

Why Unvented + Loose Fill Risky?

- Risk reduced by:
 - Airtightness of ceiling
 - Dense insulations-less airflow
 - Solar drive
 - But white roofs, shading
 - Lower interior RH (winter)
 - Why many of them work?
 - Lower permeance interior
 - Assumes good airtightness vapor retarder not bypassed
- Moisture accumulation: what gets in vs. gets out

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

C

Why Fibrous Fill Unvented Roofs?

 Unvented roofs <u>without</u> spray/board foams could reduce costs and increase market penetration...
 IF moisture damage risks are addressed

 Retrofit opportunities (existing uninsulated living space at roof line, without removing finishes)

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com


"Ridge Rot" and Moisture Buoyancy

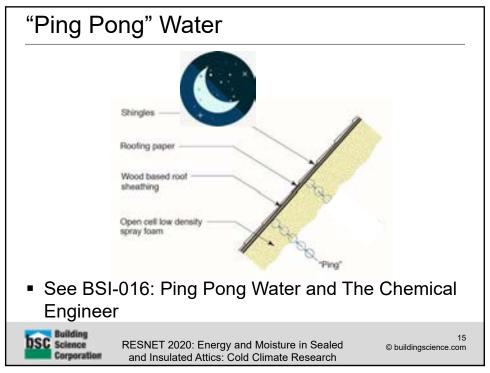
RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

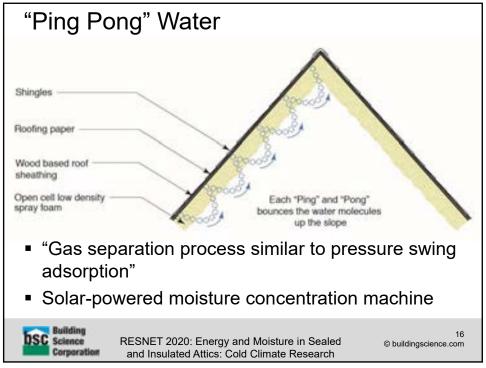
11 © buildingscience.com

11

Moisture Buoyancy

- Moisture concentrated at highest point in conditioned attic (ridge)
- Not a simple one-dimensional problem
- Not a straight-up air leakage problem
- Problem with open-cell spray foam (ocSPF) unvented roofs (high RHs in attic)-many climates
 - But not ccSPF—lower vapor permeance
- Concentration of interior-sourced moisture
- Moist air is lower density ("lighter") than dry air
- Others: "system in equilibrium has same dewpoint in connected air space"


RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research


13 © buildingscience.com

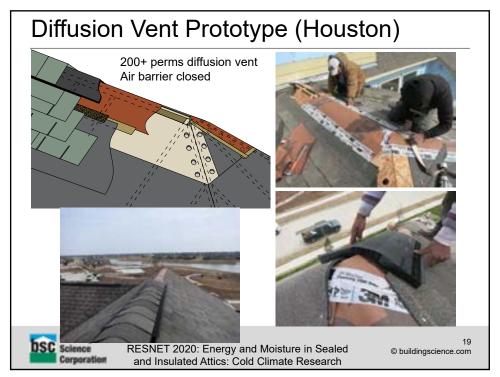
13

"Ping Pong" Water Rooting paper Wood based root sheathing Open cell low density Spray foam See BSI-016: Ping Pong Water and The Chemical Engineer RESNET 2020: Energy and Moisture in Sealed buildingscience.com

and Insulated Attics: Cold Climate Research

Previous Building America Research

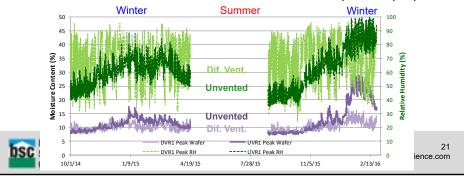
RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research


17 © buildingscience.com

17

Previous Building America Research

- Chicago (CZ 5A):
 - One winter, 50% RH
 - Unvented roofs-high risk
 - Cellulose lower risk than FG batt
 - Vented compact roof (chute) safe-but poor air leakage
- Houston/Orlando (CZ 2A):
 - 2 attics, multiple seasons
 - Diffusion vents allow greater drying, avoid moisture problems



Houston/Orlando Results

- Diffusion vent avoids wintertime ridge accumulation problems (ridge peak RHs/MCs)
- No failures at low interior RH, bigger difference at higher RH (interior humidification)
- Airtightness disappointing in some cases-no SPF
- Unvented + fibrous + DV: in 2018 IRC, CZ 1, 2, 3

21

Test Hut Approach & Construction

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

Test Hut Experimental Approach

- Climate Zone 5A test hut
- Eight north-south roof bays; guard bays
- ±R-50 (14-¾" framing, 2012 IECC)
- Test variables (changed year-to-year):
 - Vapor retarder: variable perm vs. fixed perm, various permeance curves
 - Diffusion vent at ridge: full size, none, "small," or "tight"
 - Fiberglass vs. cellulose
 - "Control" comparison § R806.4 spray foam + fibrous
- Varying interior boundary conditions
 - Winter 1: "Normal" interior conditions
 - Winter 2: Elevated RH (50% constant)
 - Winter 3: Air leakage into rafter bays

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

Test Hut South Elevation

23

Research Findings

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

27 © buildingscience.com

27

Year 1 Findings ("Normal" Conditions)

- Roofs with diffusion vent & variable-perm vapor retarder safest
- Non-diffusion vent roofs worst; high moisture levels at ridge
- Viitanen mold index values below risk thresholds (3.0 MI); meets ASHRAE Standard 160
- Visible settling of insulation (when cutting new ridge openings from above)
- Summertime inward drive at fixed-perm VR roofs
- Eliminated non-diffusion vent roofs ("small", "tight") for following research

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

28 © buildingscience.com

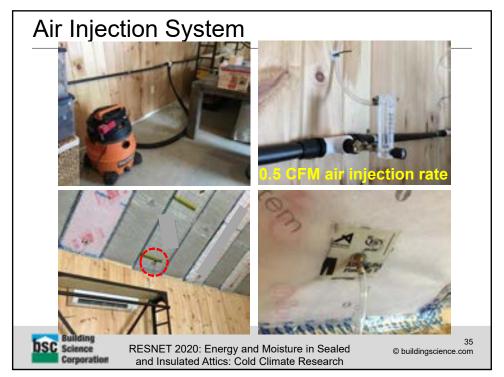
Year 2 Findings (50% RH Constant)

- Interior at 50% RH creates much more challenging conditions: many pushing edge of risk
- Many MCs over 20% to 30%, sustained high RH
- Mold Index #s remain below 3.0
- Mold growth occurred on framing & sheathing
- "Tight" diffusion vent did not work acceptably
- Code-compliant ccSPF roof acceptable
- Repacked insulation after disassembly; filling all voids
- Replaced all ridge sensors (data failures)

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

31 © buildingscience.com

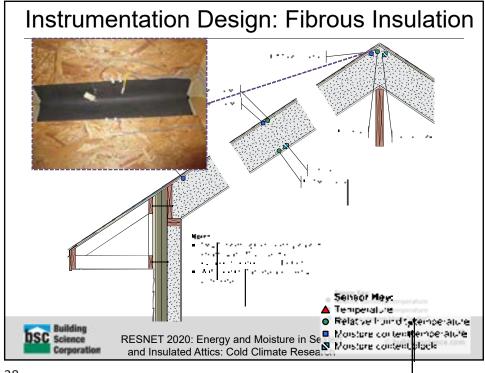
31

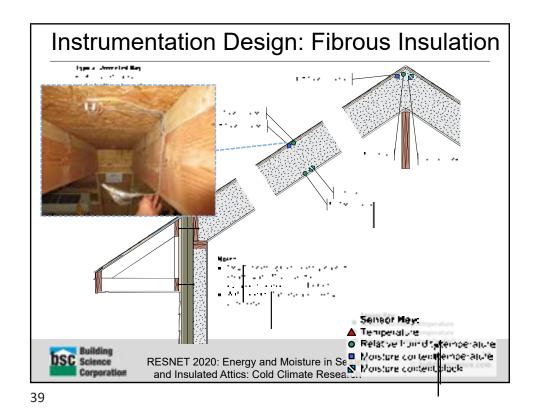

Year 3 Setup & Findings (Air Injection)

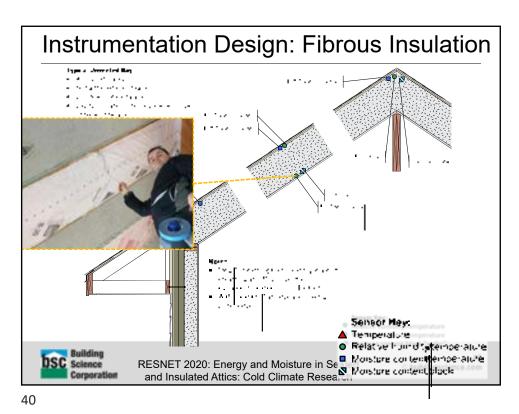
- Early winter 50% RH, no air leak
- February onward-add air leak
- Air injection system
 - Interior-to-interior leak
 - Very small air leak, 0.5 CFM per bay
 - Comparable to very airtight construction
- Before air injection: much drier than Year 2
 - Repacking insulation suppresses convection?
- Air injection: severe spike in sheathing MC
 - Localized to injection site
 - Disassembly in summer: no visible damage

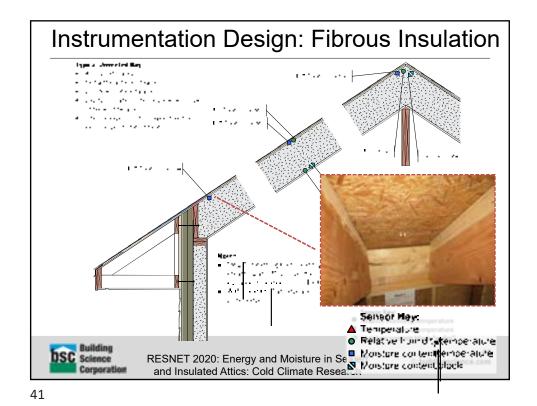
RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

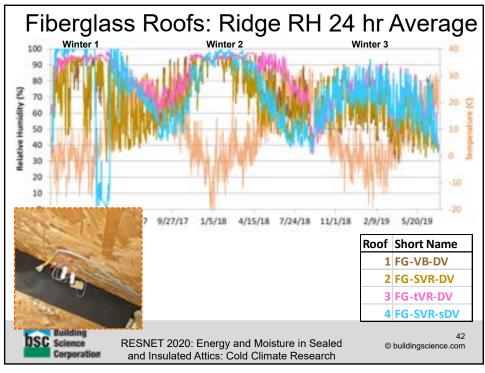
© buildingscience.com

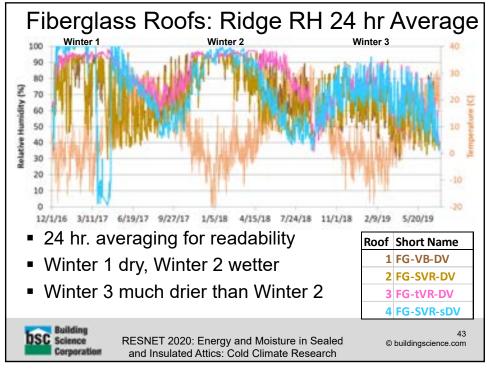

Data Results

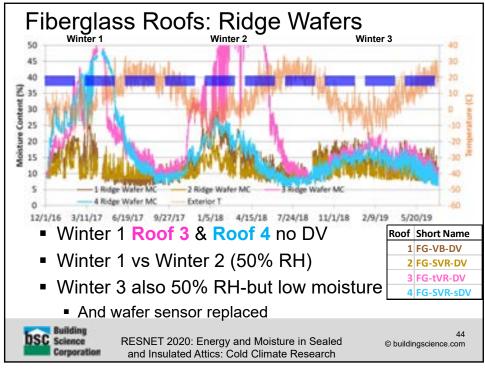


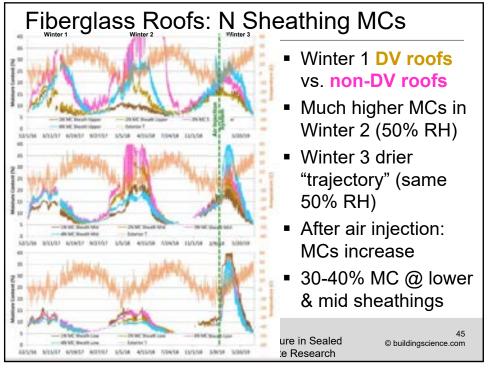

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

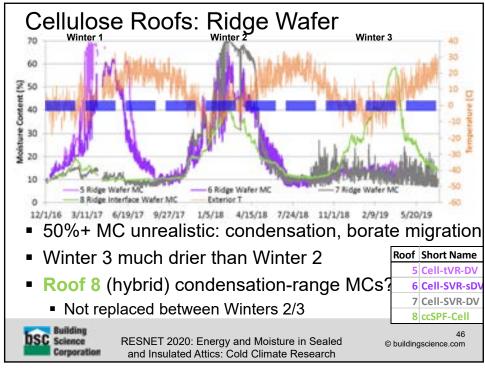

37 © buildingscience.com

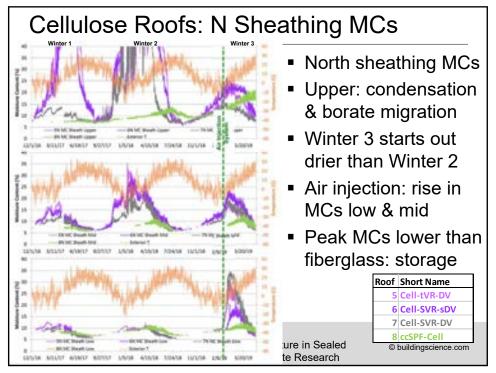

37











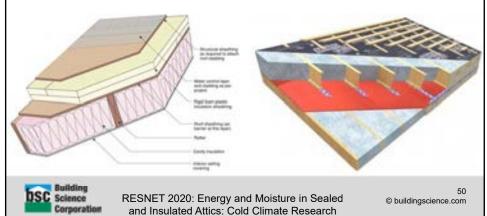
Conclusions and Recommendations

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

48 © buildingscience.com

Recommendations and Further Work

- Unvented fibrous insulation roofs can work, BUT
 - Ensure complete packing of insulation
 - Still vulnerable to small (0.5 CFM) air leaks
- Mold found after Winter 2, despite mold index < 3.0
 - Vulnerability to moisture damage at ridge
- Difficult to recommend for widespread use and acceptance in building codes
 - High indoor RHs more likely w. tighter construction and high occupant density/multifamily
- Retrofit solution for failing assemblies?
 - Demolition + spray foam not possible?
 - No place in code to allow

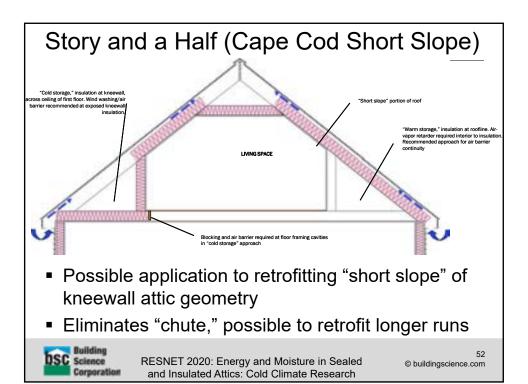

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

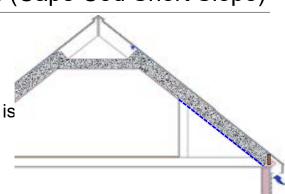
49

Recommendations and Further Work

- Foam-free unvented roof options
 - Fibrous + continuous exterior insulation outside air barrier, per § R806.5
 - Ventilated cavity outboard of vapor-permeable air/water control membrane


Recommendations and Further Work

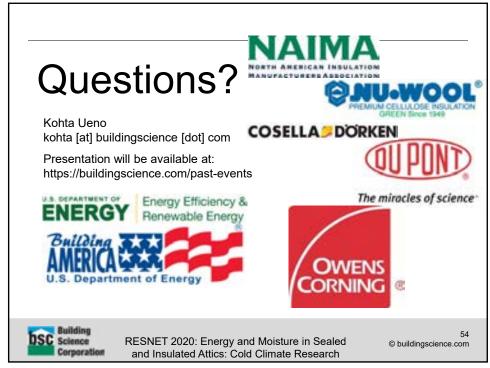
- If implementing unvented fibrous insulation roofs
 - Keep interior RH low for life of building
 - Airtightness of interior air/vapor control layer
 - Variable-perm vapor retarder (allows downward drying)
 - Large 300 perm diffusion vent recommended
 - Fibrous insulation without voids or empty cavities
 - Light colored roofs & shading increase risks
- Future work?
 - Moisture risks demonstrated; not sure if additional research useful
 - "Story and a Half Geometry" (Cape Cod short slope)


RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

51 © buildingscience.com

Story and a Half (Cape Cod Short Slope)

- Higher R-value in limited cavity
- Not <u>proven</u> by this research, but this is "lower half of roof" geometry (low risk portion)


- Rafter bay has "full-size diffusion vent" to vented attic above
- Common practice in weatherization NE/Midwest
- State code change proposals in process

RESNET 2020: Energy and Moisture in Sealed and Insulated Attics: Cold Climate Research

© buildingscience.com

53

