

Background Science Science Corporation 2018-09: NAPHC Unvented Roofs Building America © buildingscience.com

Why Fibrous Fill Unvented Roofs?

- Unvented roofs <u>without</u> spray/board foams could reduce costs and increase market penetration...
 IF moisture damage risks are addressed
- Retrofit opportunities (existing uninsulated living space at roof line, without removing finishes)

Research Project Background

Science Corporation

2018-09: NAPHC Unvented Roofs Building America

: buildinascience con

Test Hut Experimental Approach

Climate Zone 5A test hut

Eight north-south roof bays

±R-50 (14-3/4" framing, 2012 IECC)

Test variables:

Vapor retarder: variable perm vs. fixed perm

Diffusion vent at ridge vs.
 no diffusion vent "small" or "tight" DV

Fiberglass vs. cellulose

 "Control" comparison § R806.4 spray foam + fibrous

Varying interior boundary conditions

- Winter 1: "Normal" interior conditions
- Winter 2: Elevated RH (50% constant)
- Winter 3: Air leakage into rafter bays

2018-09: NAPHC Unvented Roofs Building America

Duildingscience.co

Test Hut Construction

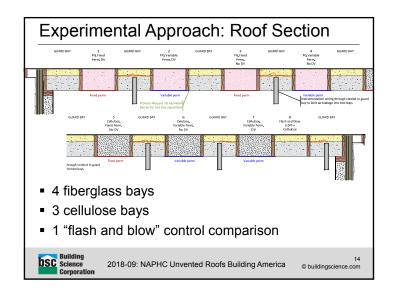
- Roof bays 24" o.c.
- Guard bays between experimental bays ("flash and blow" ccSPF + cellulose)
- Fluid-applied air and vapor barrier at guard bays

2018-09: NAPHC Unvented Roofs Building America

11 © buildingscience.com

Test Hut Construction

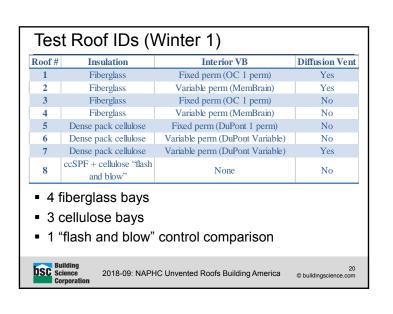
- Flash and blow bays (ccSPF shown)
 - ccSPF completes air barrier between bays, wiring holes
- Insulation netted & blown



2018-09: NAPHC Unvented Roofs Building America

buildingscience.com





2018-09: NAPHC Unvented Roofs Building America

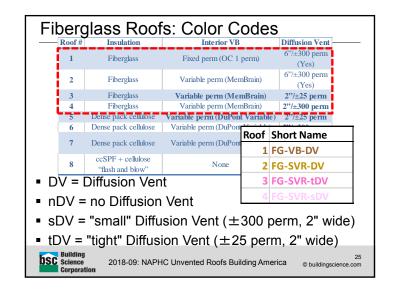
Winter 1 Conclusions

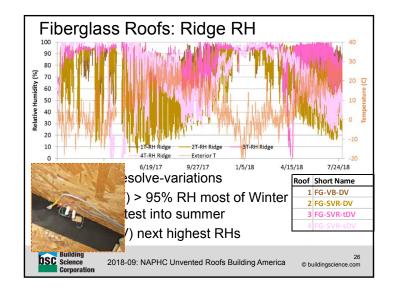
- Roofs with diffusion vent & variable-perm vapor consistently safest; ridge RHs and MCs controlled
- No diffusion vent → worst performance
- Year 1 of 3-year project; interior conditions:
 - Winter 1: "Normal" interior conditions
 - Winter 2: Elevated RH (50% constant)
 - Winter 3: Air leakage into rafter bays
- Modifications to existing assemblies
 - Winter 1 to Winter 2

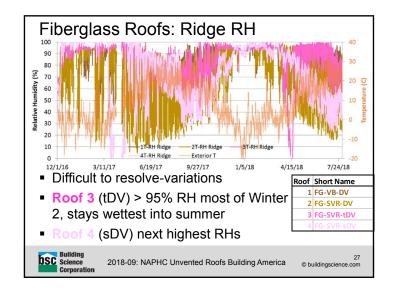
2018-09: NAPHC Unvented Roofs Building America © buildingscience.com

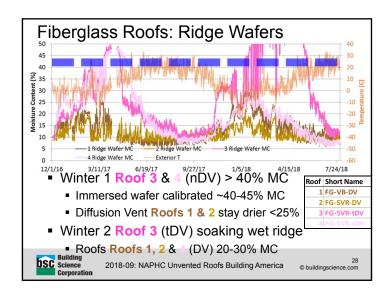
Results: Fiberglass Roofs

2018-09: NAPHC Unvented Roofs Building America

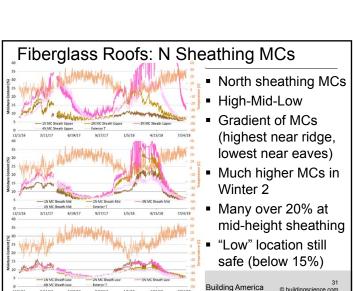

Winter 1-Winter 2 Roof Modifications				
Roof#	Insulation	Interior VB	Diffusion Vent	Short Name
1	Fiberglass	Fixed perm (OC 1 perm)	6"/±300 perm (Yes)	FG-VB-DV
2	Fiberglass	Variable perm (MemBrain)	6"/±300 perm (Yes)	FG-SVR-DV
3	Fiberglass	Variable perm (MemBrain) Fixed perm (OC-1 perm)	2"/±25 perm No	FG-SVR-tDV FG-VB-nDV
4	Fiberglass	Variable perm (MemBrain)	2"/±300 perm No	FG-SVR-s DV FG-SVR-nDV
5	Dense pack cellulose	Variable perm (DuPont Variable) Fixed perm (DuPont 1 perm)	2"/±25 perm No	Cell-SVR-tDV Cell-VB-nDV
6	Dense pack cellulose	Variable perm (DuPont Variable)	2"/±300 perm No	Cell-SVR-sDV Cell-SVR-nDV
7	Dense pack cellulose	Variable perm (DuPont Variable)	6"/300 perm (Yes)	Cell-SVR-DV
8	ccSPF + cellulose "flash and blow"	None	No	ccSPF-Cell
Science 2018-09: NAPHC Unvented Roofs Building America © buildingscience.com				

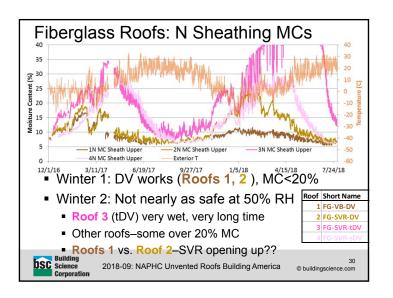

Warning on Presentation of Results


- Limited "soda straw" view of selected data
- 30 minute window to present
 - Too many roofs (mental gear-shifting)
 - Too many sensors (which one is that one?)
 - Too many sub-experiments




2018-09: NAPHC Unvented Roofs Building America





Conclusions: Fiberglass

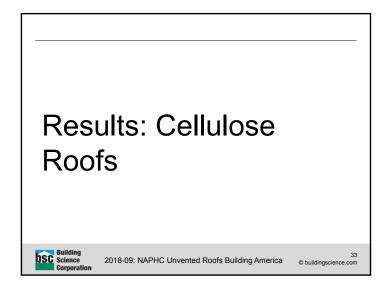
- All roofs show mold indices under 3.0: would pass ASHRAE 160... BUT

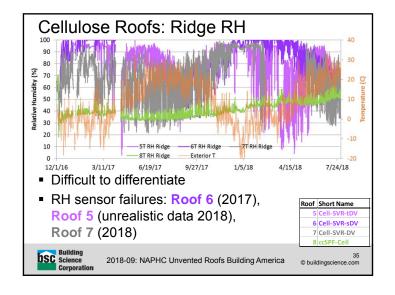
 Roof | Short Name
- Roof 3 (tDV) moisture accumulation:25 perms is not sufficient for DV

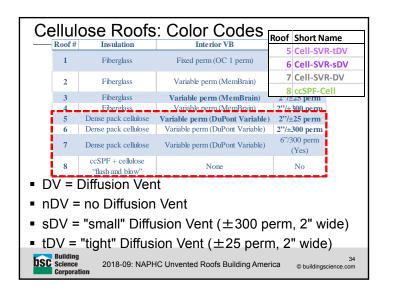
Roof Short Name

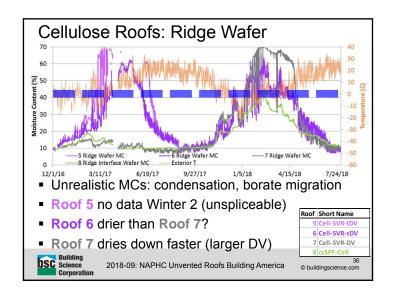
1 FG-VB-DV

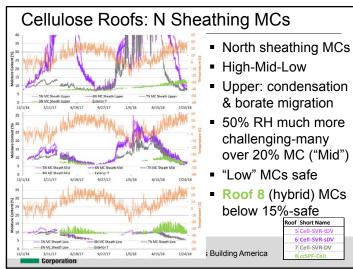
2 FG-SVR-DV

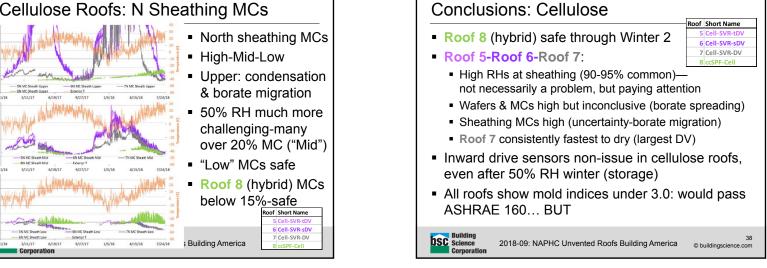

3 FG-SVR-tDV


- Sheathing MCs above 20% when 50% RH inside: no longer an easy call
- Roof 1 (fixed VB) inward drive—extended 100% RHs on north side; might not capture worst case (ridge)
- No consistent signal Roof 4 (small, SVR) vs. Roof 1-2 (larger, VB & SVR)
- Disassembly of ridge to look at sheathing conditions

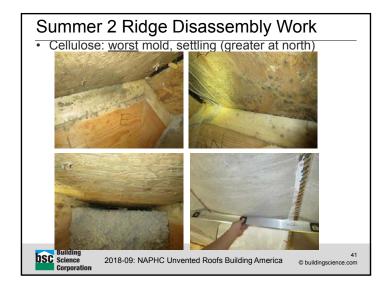



2018-09: NAPHC Unvented Roofs Building America


buildingscience.com







Conclusions

- Interior at 50% RH creates much more challenging conditions: many pushing edge of risk
- Mold Index #s remain below 3.0
- BUT we grew mold in several roofs
- Many MCs over 20% to 30%, sustained high RH
- "Tight" diffusion vent (~25 perms vs. ~300 perms) did <u>not</u> work acceptably
- "Small" diffusion vent: smaller → less drying
- 50% RH pushes limits of "flash and blow" ratios safe storage saves cellulose roof

2018-09: NAPHC Unvented Roofs Building America

© huildingscience co

Conclusions and Further Work

2018-09: NAPHC Unvented Roofs Building America

4

Conclusions

- At 50% RH interior, these are assemblies we "might get away with" without failure
- Consider requirements for interior conditions?
 - Control interior RH to maximum %?
 - Difficult to implement or enforce
 - 50% RH interior increasingly likely (tighter, multifamily)
- Takeaways from the research:
 - Diffusion vent good; bigger is better
 - Variable perm inward drying: every chance we can get
 - Hybrid roof is indisputably safest

2018-09: NAPHC Unvented Roofs Building America

© buildingscience.com

Further Work

- Winter 3 Operation (Proposed)
 - Start at 50% RH, no air leakage
 - Introduce air leakage in later winter (possible on/off)
- "Tight" diffusion vent (Roof 3 & Roof 5): replacement?
 - Full-size 300 perm diffusion vent (like others)
 - Different variable-perm interior air barrier/vapor retarder

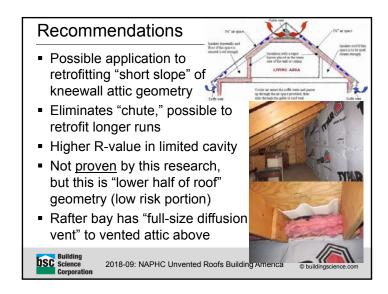
Recommendations - Code-compliant (IRC § R806.5) still safest (spray foam or exterior rigid insulation) - Mineral fiber exterior rigid insulation is an option - Corson/EcoCor/PH roof Control of State of State

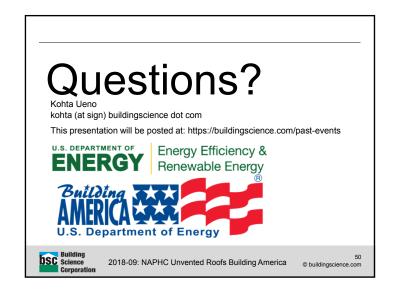
Recommendations

DSC Building Science Corporatio

2018-09: NAPHC Unvented Roofs Building America

4 buildingscience co


Recommendations


- Fibrous-only insulation (no exterior insulation) roof assemblies are "off-label" (against code)
- Diffusion vent + variable-perm vapor retarder best
- Test airtightness of interior membrane
 - Workmanship sensitive: project type? (e.g., public bid)
- Control interior RH—for life of building
 - 20-30% RH maximum in worst of winter?
- Complete cavity fills safer
- Cellulose moisture storage capacity
- Retrofit/remediation applications?

2018-09: NAPHC Unvented Roofs Building America

© buildingscience.cor

