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Background

= Interior insulation retrofits of mass masonry
= Significant increase in R-value
= Utilizes existing building stock
= Potential risks: freeze-thaw, corrosion of embedded .

metal, embedded wood structural members P ro e Ct

= Presentation is not a primer on the subject J

» Boston-area academic institution; existing solid .
masonry building; interior insulation retrofit Ove rVI eW

» BSC was asked to provide monitoring—assessing
risk associated with retrofit

» Intended to inform future retrofit projects
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Building Location & Geometry

Interior Insulation

Cambridge, MA (DOE Zone 5A)
Original construction 1917
On National Historic Register

Renovation 2010-2011
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2-3 layers solid brick
Interior hollow clay tile
Painted on asphaltic coating

3 to 3-%2" Open cell spray foam (0.5 PCF)
Thermal bridging through studs
Overall ~R-10.6 (nominal ~R-11 to R-13)
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Monitoring Locations

Wall and Instrumentation Setup
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Masonry Instrumentation
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Field Monitoring and Simulation of a Historic Mass Masonry
Building Retrofitted with Interior Insulation

Results

10

Buildings XII Conference-Ueno © buildingscience.com

Temperature (C)

Interior/Exterior Boundary Conditions

40 104

30 + 86

N}
o

- 68

i
o

@
o
Temperature (F)

o

——Tinterior North
——Tinterior South
210 | =T interior Stairs ¥ 14

Tambient - jég’ J' 2
|

-20 T T T
10/5 1/13 4/22 7/31 11/8 2/16 5/27 9/4

= 2 years’ data collection
= Wintertime interior RHs ~10-20%—overventilation?
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Driving Rain Data (Calculated)
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= Monitoring did not
capture worst
driving rain
orientation

= Rear (“north”) side
low driving rain
exposure
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Wall Temperatures (North Insulated)

Field Monitoring and Simulation of a Historic Mass Masonry
Building Retrofitted with Interior Insulation
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= North side insulated walls, various locations
through thickness of wall

» South similar at night; added solar gain during day
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Temperature (F)
Temperature (C)

Wall Temperatures (North Uninsulated)
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» North side uninsulated walls: temperature
gradient through thickness of wall
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Temperature Gradients through Wall
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Freeze-Thaw Cycles in Wall

Table 1. Number of Freeze-Thaw Cycles (Through 23°F/-5°C) within Wall Assemblies

Location # Occurrences Location # Occurrences
Ambient Air Temperature 34 N1 (Thin)-Collar Joint 8
N2 (Thick)-Collar Joint 5
N1 (Thin)-Surface 11 N3 (Parapet)-Collar Joint 2
S1 (Thin)-Surface 12 N4 (Uninsulated)-Collar Joint 0
S1 (Thin)-Collar Joint 0

= # of cycles through 23 F/-5 C

= |nsulation associated with greater number of
freeze-thaw cycles

» Surface behavior vs. one wythe inward
= Control of moisture levels is critical for durability
= Critical degree of saturation (S, (Fagerlund)
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Masonry Moisture Sensors-North Insulated Masonry Moisture Sensors-North Insulated
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» Some sensors show seasonal cycles, rain event
response; others less responsive
= Placement? Exposure? Sensor installation/wall?
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Masonry Moisture Sensors-South Insulated
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Masonry Sensors-North Uninsulated
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= Tighter correlation with driving rain (S2-Plug B)

10/5 113 422 7/31 11/8  2/16  5/27 9/a

= Others less responsive
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Masonry Sensors-North Uninsulated
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= Sensor placement
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. bry conditions at interface with open cell foam
= But interior wintertime RHs ~10-20%
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Hygrothermal
Simulations
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Hygrothermal Simulation Summary

= Good temperature correlation to measured
(simulations biased low)

» Moisture response of simulation (outer wythe)
= South dries faster than north
= Uninsulated dries faster than insulated
= Shows sharp response to individual driving rain

events—not seen in monitored data

= Moisture content of outer brick layers
= At typical rain exposures, low risk of freeze-thaw
= Assumes outside consultants S.; measurement
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Field Monitoring and Simulation of a Historic Mass Masonry
Building Retrofitted with Interior Insulation

WUFI Simulation Setup
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» Clay block and mortar joints modeled as solid (vs.
air spaces)—small effect in sensitivity analysis
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Instrumentation
Choices
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Instrumentation Choices & Issues

= Variability of moisture responses
= Instrument time response
= Variable rain exposure/concentration
= Built-up masonry wall assemblies

» RH vs. Wood MC vs. Brick MC

* RH and wood MC sensors much below range needed
for S, resolution

Field Monitoring and Simulation of a Historic Mass Masonry
Building Retrofitted with Interior Insulation

RH Wood MC Face Brick MC
(%) (Weight %) (Weight %) Notes
50% ~9% 0.02% Lower limit of resolution for wood surrogate sensors
80% 16% 0.09% Reference water content (W, or Wgo)
90% 20% 0.19%
95% 24% 0.38%
100% 29%+ 4.3% Free water saturation (W)
100% n/a 5-7% Critical degree of saturation (Su‘) for face brick samples
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Instrumentation-Spatial Resolution

» Freeze-thaw damage occurs in a thin layer—
instrumentation is larger than this dimension

= Options: gravimetric samples? Impedance meters?
Nuclear magnetic resonance (NMR)?
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Thermal
Bridging
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Thermal Bridging at Slab Floors
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Thermal Bridging at Slab Floors
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Field Monitoring and Simulation of a Historic Mass Masonry
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Thermal Bridging at Slab Floors
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Thermal Bridging at Slab Floors

= Typical Insulation Levels
= R-10.6 for 10 foot wall (RSI 1.9)
= R-3 for 1 foot floor slab (RSI 0.5)
= R-8.6 overall opaque R value (RSI 1.5)
= 19% loss from nominal value
= Higher Insulation Levels
= R-25 for 10 foot wall (RSI 4.4)
= R-3 for 1 foot floor slab (RSI 0.5)
= R-15 overall opaque R value (RSI 2.6)
= 40% loss from nominal value
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Conclusions
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Conclusions

» Insulated wall experiences cold temperatures
(and more freeze-thaw cycles)
» Insulated wall shows higher moisture contents
= Less effect of insulation/more effect of rain exposure
» Moisture levels in wall
= Some remained close to constant
= Others responded to driving rain, drying in summer
» Hygrothermal simulations
= Good temperature correlation

= Moisture response low correlation—sensor response,
driving rain exposure, masonry wall non-uniformity
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Field Monitoring and Simulation of a Historic Mass Masonry
Building Retrofitted with Interior Insulation

Conclusions

» Hygrothermal simulations: low risk of freeze-thaw
damage
= Assumes S value found in testing (by others)

» Choosing instruments for masonry wall monitoring
= Direct measurement of critical moisture levels?
= Current instruments—general patterns?
= Direct measurement of driving rain on walls
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Questions?

Many thanks to:
Walter E. Henry, P.E., Director of Engineering, MIT Department of Facilities
Daniel M. Bergey (instrumentation installation team)

Christopher Schumacher (data acquisition system)

Kohta Ueno
kohta@buildingscience.com

This presentation will be available at:
http://www.buildingscienceconsulting.com/presentations/recent.aspx
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