

Background

- Interior insulation retrofits of mass masonry
 - Significant increase in R-value
 - Utilizes existing building stock
 - Potential risks: freeze-thaw, corrosion of embedded metal, embedded wood structural members
 - · Presentation is not a primer on the subject
- Boston-area academic institution; existing solid masonry building; interior insulation retrofit
- BSC was asked to provide monitoring—assessing risk associated with retrofit
- Intended to inform future retrofit projects

DSC Science Corporation

Buildings XII Conference-Ueno © buildingscience.com

Table 1. Number of	f Freeze-Thaw Cycles (Through 23°F/-5°C) within Wall A	ssemblies
Location	# Occurrences	Location	# Occurrences
Ambient Air Temperature	34	N1 (Thin)-Collar Joint	8
N1 (Thin)-Surface	11	N2 (Thick)-Collar Joint	5
S1 (Thin)-Surface	11	N3 (Parapet)-Collar Joint N4 (Uninsulated)-Collar Joint	2
51 (Thin) Surface	12	S1 (Thin)-Collar Joint	Ő
freeze-thaw of	cycles	n greater number	of
freeze-thaw of Surface beha Control of mo	sociated with cycles avior vs. one pisture levels	n greater number	ability

Ueno

© buildingscience.com

	/ariability c	of moisture r	esponses
I	 Instrumen 	t time respons	Se
I	 Variable ratio 	ain exposure/o	concentration
I	 Built-up m 	asonry wall a	ssemblies
	RH vs Woo	od MC vs. B	Brick MC
- r			
-		ood MC sens	ors much below range needed
-			ors much below range needed
-	 RH and w 		ors much below range needed
RH	 RH and we for S_{crit} res Wood MC 	Solution Face Brick MC	-
RH (%) 50% 80%	 RH and we for S_{crit} res Wood MC (Weight %) ~9% 16% 	Face Brick MC (Weight %) 0.02% 0.09%	Notes
RH (%) 50% 80% 90%	 RH and we for S_{crit} res Wood MC (Weight %) ~9% 16% 20% 	Solution Face Brick MC (Weight %) 0.02% 0.09% 0.19%	Notes Lower limit of resolution for wood surrogate sensors
RH (%) 50% 80% 90% 95%	 RH and w for S_{crit} res Wood MC (Weight %) ~9% 16% 20% 24% 	Solution Face Brick MC (Weight %) 0.02% 0.09% 0.19% 0.38%	Notes Lower limit of resolution for wood surrogate sensors Reference water content (W_{ref} or W_{80})
RH (%) 50% 80% 90%	 RH and we for S_{crit} res Wood MC (Weight %) ~9% 16% 20% 	Solution Face Brick MC (Weight %) 0.02% 0.09% 0.19%	Notes Lower limit of resolution for wood surrogate sensors

In a two and a tion Oh ala an O la a van

36

37

© buildingscience.com

Conclusions

- Insulated wall experiences cold temperatures (and more freeze-thaw cycles)
- Insulated wall shows higher moisture contents
 - Less effect of insulation/more effect of rain exposure
- Moisture levels in wall
 - Some remained close to constant
 - Others responded to driving rain, drying in summer
- Hygrothermal simulations
 - Good temperature correlation
 - Moisture response low correlation—sensor response, driving rain exposure, masonry wall non-uniformity

```
DSC Building
Science
Corporatio
```

Buildings XII Conference-Ueno

Conclusions

- Hygrothermal simulations: low risk of freeze-thaw damage
 - Assumes S_{crit} value found in testing (by others)
- Choosing instruments for masonry wall monitoring
 - Direct measurement of critical moisture levels?
 - Current instruments—general patterns?
 - Direct measurement of driving rain on walls

Buildings XII Conference-Ueno

38 © buildingscience.com

