

High Performance Enclosures

Dr John Straube, P.Eng.
Associate Professor
University of Waterloo
Building Science Corporation

www.BuildingScience.com

Insulation - History

Insulation

- Thermal bridges of concrete and steel dramatically reduce performance
 - -6" steel stud, R20 batt = R5!
 - -6" wood stud, R1 batt = R14
- Windows have R-values of around 2-3. Huge heat loss
- ASHRAE 90.1-2010: U0.084 = R11.9 for CZ3
- Airtightness becomes very important as enclosure insulation is increased

Building Science.com

Airtighten

- Must increase airtightness
 - Improve air quality: where is it coming from?
 - Demand-controlled ventilation
 - Typical buildings leak energy
- Codes and standard are beginning to demand it
- Can only really know tightness by testing
 - Must begin to test large buildings

Building Science.com

Solar Control

- Can make little use of solar heat gain in enclosure-dominated large buildings in marine climates (insulate to keep heat in)
- Significant glass (WWR>30%) requires shade in marine climate buildings, esp. offices
- Glass area selection should be dominated by views and daylight, not solar heat gain

12/175 12-06-1

Durabilty

- Enclosures that control energy flow have reduce drying + increased wetting
- Must improve
 - rain control
 - Condensation control
 - Drying of construction moisture

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science 2008

Enclosures No. 14 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- · 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people
- Distribution a building function

Functional Layers

SUPPORT
CONTROL
FRESH

Building Science

Basic Enclosure Functions Support Resist & transfer physical forces from inside and out Lateral (wind, earthquake) Gravity (snow, dead, use) Rheological (shrink, swell) Impact, wear, abrasion Control Control Incompact wear, abrasion Functional Layers Functional Layers

Basic Enclosure Functions Support - Resist & transfer physical forces from inside and out Control - Control mass and energy flows Functional Layers • Rain (and soil moisture) - Drainage plane, capillary break, etc. Air - Continuous air barrier Heat - Continuous layer of insulation - Balance of wetting/drying Finish - Interior and exterior surfaces for people Building Science.com Enclosures No. 18 /

History of Control Functions

- Older Buildings
 - One layer does everything
- Newer Building
 - Separate layers,
 - ... separate functions

Building Science.com

No. 21

What is a high performance enclosure?

- One which provides high levels of control
- Poor continuity limits performance
- Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- This seminar: continuity + high levels

Rain Control

- Next to structure, the most important, fundamental requirement
- Source of many serious building problems
- Major impact on durability
- Low-energy buildings & rain
 - Different enclosure assemblies
 - Reduced drying ability

Air-Water-Vapor Membranes

- Often thin layers, membrane or fluid-applied
- Can be
 - 1. Water control (vapor permeable, not airtight), or
 - 2. Air & water control (vapor permeable), or
 - 3. Air, water & vapor (vapor impermeable).
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

Continuity is key!

- Must ensure no rain leaks
- Airflow control should be as continuous as practical
- Thermal control
 - We live with penetrations
 - Minimize steel and concrete to small local
- Vapor control
 - Not that important to ensure continuity

www.BuildingScience.com

Air Barrier Systems

- Need an excellent air barrier in all buildings
 - Comfort & health
 - Moisture / condensation
 - Energy
 - Sound, fire, etc.
- Cant make it too tight.
- Multiple air barriers improve redundancy

Air Barriers Requirements

- Requirements
 - Continuous (most important)
 - Strong
 - Stiff,
 - Durable,
 - Air Impermeable (least important)
- Easily 1/3 of total heat loss is due to air leakage in well-insulated building

12-06-18

Thermal Continuity

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few
- Major offenders / weak spots
 - Penetrating slabs (<R1)</p>
 - Steel studs (<R1)
 - Windows (R2-R3)
- Area and low R matter to overall significance

Thermal Bridge Examples

- Balconies, etc
- Exposed slab edges

Windows

- Our most expensive thermal bridges
- Aluminum is 4-5 times as conductive as steel
- Difficult to buy commercial aluminum windows / curtainwall over R3.
- Allow solar heat in
 - Useful in cold weather
 - Requires cooling in summer

	Center of Glass (COG) Performance*			AlpenGlass+TM		
Industry Leading Performance	U-Value	R-Value	SHGC	VT	Glazing	Fill
	0.05	20.00	0.29	0.44	Össal Pane, Triple Low Solar Heat Coefficient Film	Xenon
Premium Performance	U-Value	R-Value	SHGC	Vī	Glazing	Fill
Same Form	0.07	14,29	0,24	0.43	Qual Pane, Dual Low Solar Hear Coefficient Film	Krypton
	0,11	9.09	0.51	0.65	Qual Pane, Dual High Solar Heat Coefficient Film	Krypton
High Performance	U-Value	R-Value	SHGC	VT	Glazing	Fill
Comments	0.15	9.09	0.30	0.55	Dual Pane, Single Low Solar Heat Coefficient Film	Krypton
by of ThermaProof	0.19	5.26	0.60	0.73	Oual Pane, Single High Solar Heat Coefficient Film	Krypton
vs and AlpenGlass+		Markener	or merbers one	consecutable	s values based on tâtrii. Win	dow 5.2 volum

Solar Gain

- Measured by SHGC
- Solar gain useful during cold sunny weather
- But least heating is needed during daytime for commercial buildings
- Overheating discomfort is a real risk
- Must size glass Area x SHGC carefully
 - High values = air conditioning and discomfort

Summary

- Define the control layers
- Ensure continuity
- Then increase control performance of each
- Window area, performance, and integration into walls becomes critical

www.BuildingScience.com

See also "Seminars / Recent Presentations"