

Architectural Design for the 2030 Challenge

Dr John Straube, P.Eng.
Associate Professor
School of Architecture / Dept. of Civil Engineering
University of Waterloo
Building Science Corporation

BuildingScience.com

Actual Energy Consumption of Canadian Commerical and Institutional Buildings 500 400 360 kWh/m²/yı Before 1920 1920-1959 1960-1969 1970-1979 1980-1989 1990-1999 2000-2004 Year Building Constructed Building Science

Architecture 2030

- Focus on energy consumption
 - Real targets, not "% below something"
- Goal is Net Zero Energy
 - 60% until 2015
 - 100% by 2030
- Baseline is approximately the energy use of all buildings of same type and location in 2003 or so

					ar	hitectu	
2030 CHALLENGE Targets: Canadian Commercial Regional Averages Averages for Site Energy Use and 2030 Challenge Energy Reduction Targets by Commercial Space/Building Type*							
Commercial Space/Building Type	Average Site EUI (GJ/m²/yr)	2030 Challenge Site EUI Targets (GJ/m²/Yr)					
		50% Target	60% Target	70% Target	80% Target	90% Targ	
Canada							
Wholesale Trade	1.470	0.735	0.588	0.441	0.294	0.147	
Retail Trade	1.707	0.854	0.683	0.512	0.341	0.171	
Transportation and Warehousing	1.323	0.661	0.529	0.397	0.265	0.132	
Information and Cultural Industries	1.892	0.946	0.757	0.568	0.378	0.189	
Offices	1.382	0.691	0.553	0.415	0.276	0.138	
Educational Services	1.696	0.848	0.678	0.509	0.339	0.170	
Healthcare and Social Assistance	2.212	1.106	0.885	0.664	0.442	0.221	
Arts, Entertainment and Recreation	2.156	1.078	0.863	0.647	0.431	0.216	
Accommodation and Food Services	4.670	2.335	1.868	1.401	0.934	0.467	
Other Services	1.439	0.719	0.576	0.432	0.288	0.144	
Out of the o	1,000.1						
Ontario		-	0. 0.000	1 100000			
Wholesale Trade	1.853	0.926	0.741	0.556	0.371	0.185	
Retail Trade	1.622	0.811	0.649	0.487	0.324	0.162	
Transportation and Warehousing	1.398	0.699	0.559	0.419	0.280	0.140	
Information and Cultural Industries	1.734	0.867	0.693	0.520	0.347	0.173	
Offices 395 kWh/m²/yr	1.421	0.710	0.568	0.426	0.284	0.142	
Educational Services 490 kWh/m²/vr	1.768	0.884	0.707	0.530	0.354	0.177	
Healthcare and Social Assistance	2.038	1.019	0.815	0.611	0.408	0.204	
Arts, Entertainment and Recreation	2.677	1.338	1.071	0.803	0.535	0.268	
Accommodation and Food Services	2.597	1.299	1.039	0.779	0.519	0.260	
Other Services	1.568	0.784	0.627	0.470	0.314	0.157	
Ontario						-	
Single Detached	0.830	0.415	0.332	0.249	0.166	0.083	
Single Detached Single Attached	0.830	0.415	0.332	0.249	0.166	0.083	
Apartments 190 kWh/m²/yr	0.677	0.339	0.332	0.249	0.100	0.068	
Aparunents 130 KVII/III / yl	1.203	0.539	0.481	0.203	0.135	0.120	

Process and Philosophy

- Decide to value low energy consumption
- Set measurable targets, predict usage, measure performance
- Stamp out waste everywhere
- Use energy efficiently when you need to use it
- Do not sacrifice safety, comfort, health and durability

Available Strategies

- Siting (small impact)
 - Orient with sun, wind, rain, earth shelter?
- Shape and Form (small to moderate impact)
 - Small, Compact, simple
- Exceptional building enclosure (mod to large impact)
 - Insulated, airtight, durable, solar control
- Efficient Equipment (mod impact)
 - Not there or off is best, controls help
- Renewable Energy Generation (impact varies)
 - Only after very significant reductions

17

8/175

www.BuildingScience.com

illdings,Energy, Environment

Basic Goals (cold/mixed)

Keep heat in

When it is cold

Insulation Airtightness Solar Control

Keep heat / sun out

- When it is warm/hot

Last a long time

Rain Control

Reduce construction/repair resources over time

• Use efficient equipment

- Efficient lighting

- Efficient computers, elevators

Off is very efficient

9/175

1-09-27

Can we do it?

- Is it possible or practical to drop energy use by 60% in cold-climate Canada?
- Getting office to 200? 100? kWh/m²/yr?

Grander View, 2010

- Mostly simple, standard technology
- Modest cost premium

Waterloo Apartment / Office

- Built for median cost in 2005
- Less than 100 ekWh/m² (Ont avg around 250)
- All standard products

John Straube

London UK City Hall

• Measured: 376 kWh/m²/yr

HVAC

- Architect helps select
- Critical role, as HVAC offers about half the possible savings
- Fancy, complex, expensive not often the lowest energy choice

www.BuildingScience.com

Top Ten List

Commercial and institutional mid-size buildings, Canadian climates

- Limit window-to-wall ratio (WWR) to the range of 20-40%, 50% with ultra-performance windows
- Increase window performance (lowest U-value affordable in cold climates, including frame effects)
- Increase wall/roof insulation (esp. by controlling thermal bridging) and airtighten
- Separate ventilation air supply from heating and cooling.
- · Use occupancy and daylighting controls for lights and equipment
- Reduce equipment/plug & lighting power densities
- Don't over ventilate, use heat recovery & demand controlled ventilation
- Improve boiler and chiller efficiency & recover waste heat (eg IT rooms!)
- Use variable speed controls for all large pumps and fans and implement low temperature hydronic heating and cooling where appropriate.
- Use a simple and compact building form, oriented to the sun, with a depth that allows daylight harvesting.

 Word Building Science.com

Enclosures

- Enclosures reduce space heating/cooling
 - and help with lighting, ventilation
- We still need **energy** for other things
 - Lights, appliances, computers, elevators, etc
- Still need to provide some HVAC!
- Great enclosures reduce demand & hrs of operation
- Can't "insulate to zero"

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science

Enclosures No. 29 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Form & Massing • Keep it simple • Cheaper, easier, faster • Fewer - thermal bridges, air leaks - Material volumes - construction challenges

Define "perimeter"

- · Maximum distance about 25 ft/ 7.5 m
 - Classrooms often 25-30 ft, open plan office
- Minimum often set by walls/partitions of exterior offices
 - Cellular offices often 15 ft/ 4.5m deep

Subling Science 2008

Expanded Plans

• Better daylight, easier ventilation but more enclosure heat loss and gain and air leaks

Enclosure Intro Summary

- Enclosure often defines the H/C load
 - Architecture defines massing, orientation, enclosure
- Enclosure more critical for skin-dominated
 - Heat flow, Solar control, air tightness
- Lighting, ventilation critical for deep plan

Building Science

Grouping buildings

- Grouping units reduces heat loss/gain through shared walls
- Reduces resource use per unit

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people
- Distribution a building function

Functional Layers

Support
CONTROL
FINISH

Building Science

Basic Enclosure Functions • Support - Resist & transfer physical forces from inside and out • Lateral (wind, earthquake) • Gravity (snow, dead, use) • Rheological (shrink, swell) • Impact, wear, abrasion • Control - Control mass and energy flows • Finish - Interior and exterior surfaces for people

Other Control . . . Support Control Fire **Functional Layers** Penetration Propagation Sound Penetration Reflection Light · Diffuse/glare View Finish Building Science.com Enclosures No. 47 /

Basic Enclosure Functions Support Resist & transfer physical forces from inside and out Control - Control mass and energy flows **Functional Layers** • Rain (and soil moisture) - Drainage plane, capillary break, etc. • Air Continuous air barrier Heat CONTROL - Continuous layer of insulation Vapor Balance of wetting/drying Finish - Interior and exterior surfaces for people Building Science.com Enclosures No. 46 /

History of Control Functions

- Older Buildings
 - One layer does everything
- Newer Building
 - Separate layers,
 - ... separate functions

Building Science.com

No. 4

The "Perfect Wall" · Finish of whatever Control continuity Finish- Rain control layer Water control layer · Perfect barrier · Drained with gap Air control layer Storage - Air control layer Thermal control · Air barrier Thermal control layer Vapor control layer · Aka insulation, radiant barriers Vapor control layer Support · Retarders, barriers, etc Structure: anything that works Fire Control may be needed Sound Control optional Building Science.com 51

What is a High-performance enclosure?

- One which provides high levels of control
- Poor continuity limits performance
- Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- This course: continuity + high levels

Rain Control

- Next to structure, the most important, fundamental requirement
- Source of many serious building problems
- Major impact on durability
- Low-energy buildings & rain
 - Different enclosure assemblies
 - Reduced drying ability= need for better control!

Air-Water-Vapor

- Often thin layers
- Can be
 - 1. Water control (vapor permeable, not airtight), or
 - 2. Air & water control (vapor permeable), or
 - 3. Air, water & vapor (vapor impermeable).
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

Continuity is key!

- Must ensure no rain leaks
- Airflow control should be as continuous as practical
- Thermal control
 - We live with penetrations
 - Minimize steel and concrete to small local
- Vapor control
 - Not that important to ensure continuity

www.BuildingScience.com

Air Barrier Systems

- Need an excellent air barrier in all buildings
 - Comfort & health
 - Moisture / condensation
 - Energy
 - Sound, fire, etc.
- Can't make it too tight.
- Multiple air barriers improve redundancy

www.BuildingScience.com

Air Flow Control

Air leakage

- Hard to save energy with the door open
- Buildings getting tighter, but . . .
 - Many still leak way too much
 - We can't identify the leakers
 - Need to test! Commission!
- Ventilation: Many try to improve air quality by increasing quantity
 - Target good air when and where needed

105/175 11-09-27

Air Barriers and Energy

- Requirements
 - Continuous (most important)
 - Strong
 - Stiff,
 - Durable,
 - Air Impermeable (least important)
- Easily 1/3 of total heat loss is due to air leakage in well-insulated building

11-09-27

Thermal Control

- Insulation
 - Slows heat flow in and out
- Windows
 - Slow heat flow in and out
 - Control solar gain : allow or reject?
- "cool" roofs
 - Reduce solar gain
- Radiant barriers

Thermal Insulation

Insulation	R-value/inch	k (W/mK) 0.36 -0.50 W/m ² K	
Empty airspace 0.75"-1.5" (20-40 mm)	R2.0 - 2.75		
Empty airspace 3.5"-5.5" (90-140 mm)	R2.75	$0.50 { m W/m^2K}$	
Batt (mineral fiber)	3.5-3.8	0.034 - 0.042	
Extruded polystyrene (XPS)	5.0	0.029	
Polyisocyanurate (PIC)	6.0-6.5	0.022 - 0.024	
Expanded polystyrene (EPS)	3.6-4.2	0.034 - 0.040	
Semi-rigid mineral fiber (MFI)	3.6-4.2	0.034 - 0.040	
Spray fiberglass	3.7-4.0	0.034 - 0.038	
Closed-cell spray foam (2 pcf) ccSPF	5.8-6.6	0.022 - 0.025	
Open-cell spray foam (0.5 pcf) ocSPF	3.6	0.040	
Aerogel	8-12	0.012-0.018	
Vacuum Insulated Panels (VIP)	20-35	0.004-0.008	

How much Insulation

- Heat Flow = $Area * (T_{inside} T_{outside})$ R-value
- Double R-value, halve heat flow. Always.
- Optimum depends on
 - Cost of energy over life of building
 - Cost of adding more insulation
 - Savings in mechanical equipment, controls

Thermal Continuity

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few
- Major offenders / weak spots
 - Penetrating slabs (<R1)</p>
 - Steel studs (<R1)
 - Windows (R2-R3)
- Area and low R matter to overall significance

Thermal Bridge Examples

- Balconies, etc
- Exposed slab edges

Windows

- Our most expensive thermal bridges
- Aluminum is 4-5 times as conductive as aluminum
- Difficult to buy commercial aluminum windows / curtainwall over R3.
- Allow solar heat in
 - Useful in cold weather
 - Requires cooling in summer

Enclosure Summary

- Simple compact form, oriented to the sun
- Identify functional control layers
 - Rain, air, heat, vapor
- Provide continuity of control layers
 - Details, thermal bridging
- Select high levels of performance

