

Architecture 2030

- · Focus on energy consumption
 - Real targets, not "% below something"
- Goal is Net Zero Energy
 - 60% until 2015
 - 100% by 2030
- Baseline is approximately the energy use of all buildings of same type and location in 2003 or so

Process and Philosophy

- · Decide to value low energy consumption
- Set measurable targets, predict usage, measure performance
- · Stamp out waste everywhere
- Use energy efficiently when you need to use it
- Do not sacrifice safety, comfort, health and durability

Available Strategies

- · Siting (small impact)
 - Orient with sun, wind, rain, earth shelter?
- Shape and Form (small to moderate impact)
 - Small, Compact, simple
- Exceptional building enclosure (mod to large impact)
 - Insulated, airtight, durable, solar control
- Efficient Equipment (mod impact)
 - Not there or off is best, controls help
- Renewable Energy Generation (impact varies)
 - Only after very significant reductions

30%

70%

60%

50%

40%

Natural Red Carada

Canada

Basic Goals (cold/mixed)

- When it is cold
- Keep heat / sun out
 - When it is warm/hot
- · Last a long time
 - Rain Control - Reduce construction/repair resources over time
- · Use efficient equipment
 - Efficient lighting
 - Efficient computers, elevators

Off is very efficient

Insulation Airtightness

Solar Control

30% 20% 10%

rom Ressour Canada

90% Fans & Pumps Source: Stephen Pope, OAA Space & Vent Air Hear Cooling Small Office Archetype ekWh/m2 4010m² conditioned floor area 3 storey height, 3.65m floor-to floor, 1,337m² roof/floor plate area; 1,604m² gross wall area Natural gas fired boilers provide heat for space, DHW, and ventilation air heating. Electricity provides cooling, lights, fans and pumps.

Toronto Small Office Archetype

Can we do it?

- Is it possible or practical to drop energy use by 60% in cold-climate Canada?
- Standard Ontario office uses almost 400 kWh/m²/yr
- Can we get an office to 200? 100? kWh/m²/yr?

www.BuildingScience.com

Grander View, 2010

- · Mostly simple, standard technology
- Modest cost premium

Waterloo Apartment / Office • Built for median cost in 2005 • Around 100 ekWh/m² (Ont avg around 250) • All standard products

London UK City Hall

• Measured: 376 kWh/m²/yr

Top Ten List

Commercial and institutional mid-size buildings, Canadian climates

- Limit window-to-wall ratio (WWR) to the range of 20-40%, 50% with ultra-performance windows
- Increase window performance (lowest U-value affordable in cold climates, including frame effects)
- Increase wall/roof insulation (esp. by controlling thermal bridging) and airtighten
- Separate ventilation air supply from heating and cooling.
- Use occupancy and daylighting controls for lights and equipment
- Reduce equipment/plug & lighting power densities
- Don't over ventilate, use heat recovery & demand controlled ventilation
- Improve boiler and chiller efficiency & recover waste heat (eg IT rooms!)
- Use variable speed controls for all large pumps and fans and implement low temperature hydronic heating and cooling where appropriate.
- Use a simple and compact building form, oriented to the sun, with a depth that allows daylight harvesting.

HVAC

- · Architect helps select
- Critical role, as HVAC offers about half the possible savings
- Fancy, complex, expensive not often the lowest energy choice

www.BuildingScience.com

Enclosures

- Enclosures reduce space heating/cooling
 - and help with lighting, ventilation
- · We still need energy for other things
 - Lights, appliances, computers, elevators, etc
- Still need to provide some HVAC!
- Great enclosures reduce demand & hrs of operation
- Can't "insulate to zero"

www.BuildingScience.com

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science

Enclosures No. 29

Climate Load Modification

- · Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Define "perimeter"

- Maximum distance about 25 ft/ 7.5 m
 - Classrooms often 25-30 ft, open plan office
- Minimum often set by walls/partitions of exterior offices
 - Cellular offices often 15 ft/ 4.5m deep

 $(a_{ij},a_{ij},a_{ij},a_{ij}) \in \mathcal{C}_{ij}$

Expanded Plans Better daylight, easier ventilation but more enclosure heat loss and gain and air leaks

Grouping buildings • Grouping units reduces heat loss/gain through shared walls • Reduces resource use per unit

Enclosure Intro Summary

- Enclosure often defines the H/C load
 - Architecture defines massing, orientation, enclosure
- Enclosure more critical for skin-dominated
 - Heat flow, Solar control, air tightness
- Lighting, ventilation critical for deep plan

Building Scieno

Basic Enclosure Functions - Support - Resist & transfer physical forces from inside and out - Lateral (wind, earthquake) - Gravity (snow, dead, use) - Rheological (shrink, swell) - Impact, wear, abrasion - Control - Control mass and energy flows - Finish - Interior and exterior surfaces for people

What is a High-performance enclosure?

- · One which provides high levels of control
- · Poor continuity limits performance
- Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- This course: continuity + high levels

Rain Control

- Next to structure, the most important, fundamental requirement
- Source of many serious building problems
- · Major impact on durability
- Low-energy buildings & rain
 - Different enclosure assemblies
 - Reduced drying ability= need for better control!

Windows and Doors

- All penetrations should be drained, regardless of the approach taken to the element
- Windows and doors are the most critical openings to drain
- Rough opening must be drained

Air-Water-Vapor

- · Often thin layers
- Can be
 - 1. Water control (vapor permeable, not airtight), or
 - 2. Air & water control (vapor permeable), or
 - 3. Air, water & vapor (vapor impermeable).
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

Rain Control Summary

· Rain control should be top priority

Air Barrier Systems

- · Need an excellent air barrier in all buildings
 - Comfort & health
 - Moisture / condensation
 - Energy
 - Sound, fire, etc.
- · Can't make it too tight.
- Multiple air barriers improve redundancy

www.BuildingScience.cor

Air leakage

- Hard to save energy with the door open
- Buildings getting tighter, but . . .
 - Many still leak way too much
 - We can't identify the leakers
 - Need to test! Commission!
- Ventilation: Many try to improve air quality by increasing quantity
 - Target good air when and where needed

11

Air Barriers and Energy

- Requirements
 - Continuous (most important)
 - Strong
 - Stiff,
 - Durable,
- Air Impermeable (least important)
- Easily 1/3 of total heat loss is due to air leakage in well-insulated building

11-11-

Thermal Control Insulation — Slows heat flow in and out Windows — Slow heat flow in and out — Control solar gain : allow or reject? "cool" roofs — Reduce solar gain Radiant barriers

Thermal Insulation

Insulation	R-value/inch	k (W/mK)
Empty airspace 0.75"-1.5" (20-40 mm)	R2.0 - 2.75	0.36 -0.50 W/m ² K
Empty airspace 3.5"-5.5" (90-140 mm)	R2.75	$0.50 \ { m W/m^2K}$
Batt (mineral fiber)	3.5-3.8	0.034 - 0.042
Extruded polystyrene (XPS)	5.0	0.029
Polyisocyanurate (PIC)	6.0-6.5	0.022 - 0.024
Expanded polystyrene (EPS)	3.6-4.2	0.034 - 0.040
Semi-rigid mineral fiber (MFI)	3.6-4.2	0.034 - 0.040
Spray fiberglass	3.7-4.0	0.034 - 0.038
Closed-cell spray foam (2 pcf) ccSPF	5.8-6.6	0.022 - 0.025
Open-cell spray foam (0.5 pcf) ocSPF	3.6	0.040
Aerogel	8-12	0.012-0.018
Vacuum Insulated Panels (VIP)	20-35	0.004-0.008

How much Insulation

• Heat Flow = $\frac{\text{Area * (T}_{\text{inside}} - \text{T}_{\text{outside}})}{\text{R-value}}$

• Double R-value, halve heat flow. Always.

- Optimum depends on
 - Cost of energy over life of building
 - Cost of adding more insulation
 - Savings in mechanical equipment, controls

Thermal Continuity

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few
- Major offenders / weak spots
 - Penetrating slabs (<R1)
 - Steel studs (<R1)
 - Windows (R2-R3)
- Area and low R matter to overall significance

Thermal Bridge Examples • Balconies, etc • Exposed slab edges

Structural penetrations

- Relieving/Shelf angles
- Balconies
- Canopies
- Signs

Windows

- Our most expensive thermal bridges
- Aluminum is 4-5 times as conductive as aluminum
- Difficult to buy commercial aluminum windows / curtainwall over R3.
- Allow solar heat in
 - Useful in cold weather
 - Requires cooling in summer

Solar Gain

- · Measured by SHGC
- Solar gain useful during cold sunny weather
- But least heating is needed during daytime for commercial buildings
- Overheating discomfort is a real risk
- Must size glass Area x SHGC carefully
 - High values = air conditioning and discomfort

Interior or Exterior Shade • Operable Solar Control of windows may be necessary for ultra-low energy buildings • Exterior Shades always beat low SHGC glazing - But the cost capital and maintenance • Interior shades don't work well with good windows

Low-Slope Roofs

- Not flat. Ponding is not acceptable.
- Get water right, then worry about energy!
- Components
 - Rain barrier is roof membrane
 - Drainage gap is the outdoors
 - Air barrier can be roof membrane
 - Better to install interior
 - Insulation is rigid, polyiso, XPS, EPS, rockwool

uilding Science.com

Green roofs and LEED

- LEED-NC currently gives one point for a vegetated roof on at least 50% of roof area
 - This is a design credit, only visual inspection of installation
- In density development, green roofs can count towards to other points:
 - Sustainable Sites 5.2 Open Space (if accessible)
 - Sustainable Sites 5.1 Habitat (if native plants)
 - But GR alone will rarely achieve these two

Unvented Cathedralized Attics

- Move air and insulation control from ceiling plane to roof plane
- Moves HVAC into conditioned space
 - Saves lots of energy, reduce problems with comfort, extends life of equipment
- Avoids wind blown rain, snow, and burning wildfire embers

Building Science 200

Enclosure Summary

- Simple compact form, oriented to the sun
- Identify functional control layers
 - Rain, air, heat, vapor
- Provide continuity of control layers
 - Details, thermal bridging
- Select high levels of performance

Mechanical Basics

HVAC Objectives

- Health
- Safety
- Comfort
 - Temperature, humidity, air speed, noise, light
- Reliability
 - Long term performance, maintainable
- Efficiency
 - Meet the needs imposed by occupants and enclosure with a minimum of additional energy

.....

230

Common Problems

- · Poor comfort
 - Poor control of temperature and humidity,
- Noise, drafts from high velocity air
- Health
 - Air based systems act as distribution for outdoor pollutants, mold grown in coils/ducts
 - Chilled water pipes collect condensation leading to mold
 - Insufficient ventilation/mixing common issue
- Energy
 - Systems are often very inefficient
- Maintainability / Controllability
 - Systems are complex, difficult to trouble shoot, maintain etc

1-11-11

231

Functions

Five Critical functions are needed

- Ventilation
- "fresh air"
 - Dilute / flush pollutants
- Heating
- Cooling
- Humidity Control
- · Air filtration / pollutant Removal
 - Remove particles from inside and outside air
 - Remove pollutants in special systems

1-11

Physical Systems & Components

- Components
 - Heat production (including cooling)
 - Heat rejection / collection
 - Heat/Cold Distribution
 - Ventilation air supply/exhaust
 - Ventilation Air Distribution Air Filtration
 - Humidification/ Dehumidification
- Confusion arises when functions are combined across different components in different systems

11-11-11

233

Any source of heating or cooling Combined ventilation/ humdity control

Ground Source Heat Pump • A water to air or water to water heat pump with with collection / rejection in ground

Terminal Unit: Fan coils • Use fans to below room air over coils - Fan-driven air movement = distribution / mixing within a space - Noise, maintenance issues • Fans require electricity - Many existing FC are inefficient and noisy - Very efficient fan motors now available

Chilled Beams

- Increase the convective component of radiant panels, usually for cooling
- · Active CB use mechanically-induced airflow
- Passive CB use natural convection

