www.buildingscience.com

Betsy Pettit, FAIA

A18 Deep Energy Retrofits for Existing Single Family Homes Case Studies

Residential Design and Construction 2010 14 April 2010

Deep Energy Retrofit

- There are approximately 60 million units of housing in the U.S. that were built prior to 1960.
- Most of these will need major systems replaced in the near future.
- As siding, windows, and roof claddings need to be replaced, opportunities arise to reduce the overall energy use of these homes.
- Insulating sheathings and new better performing windows will increase comfort while reducing energy use.
- Once enclosure losses are reduced, old boilers, furnaces, and air conditioners can be replaced and downsized with more efficient equipment.
- Whole house ventilation equipment completes the upgrades, insuring good indoor air quality.
- Details and results from several case studies of cold climate deep energy retrofits will be presented.

Assessing the Impact of US Housing

Total Housing Units in 2001 (millions):

Single-Family Homes	73.7	
Apartments (all buildings)		26.5
Mobile Homes	6.8	
Constructed since 2001	10	

Approx Existing Units: 115 million units¹

1. Energy Information Administration, Residential Energy Consumption Survey, 2001 data: www.eia.doe.gov/emeu/ recs

3

2. EIA, Annual Energy Review, 2001 data: www.eia.doe.gov/emeu/aer

U.S. DEPARTMENT OF Energy Efficiency & Brilling Control of Energy Renewable Energy

Building Energy Use

Primary Energy Consumption by Sector, 2001

Deep Energy Retrofits 14 April 2010

Existing Housing Stock

Age of US Housing Stock (all unit types)

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Building

Science

Corporation

bsc

The Whole Building Approach

- Performance Issues driving Retrofit:
 - Comfort
 - More use
 - Health
 - **Durability**
 - Operating Costs
 - Energy Efficiency

Expansion of space

Deep Energy Retrofits 14 April 2010

7

U.S. DEPARTMENT OF Energy Efficiency & Building Control of Energy Renewable Energy U.S. Department of E

DSC Building Science Corporation

Choices

Changing mechanical systems is least invasive

- Lifespan is moderate, say (20 yrs)
- 10% eff improvement = 10% operating savings = easy

Lighting and ventilation

- Change is easy at any time
- Lighting and controls payback quickly

Enclosures

- Windows last 25-50 yrs
- Insulation last 100+ yrs
- Cladding lasts 35-200+ years

BSI-014

MUST have clear idea of enclosure upgrades before deciding on mechanical!

8

Enclosure Retrofit

- Important target for many buildings
 - Airtightness
 - Windows
 - Insulation
 - Roof
 - Walls
 - Basement
 - Slabs
- Prioritize by Ease and Impact

9

Mechanical Retrofit

- After enclosure upgrade
 - Much smaller and quieter systems can be chosen
- Air-based can be replaced w/ hydro-air
- Steam-based can be replaced hot water
- Low-temperature (more efficient) systems can be used
- For ventilation load add HRV
- Variable speed fans

Deep Energy Retrofit

- Significant upgrades are incrementally less expensive
 - Small upgrades very cost effective, but small (10-25% reductions)
 - mid-range upgrades (15-50%) usually really expensive per energy saved
- Deep retrofits (>50%) secure buildings future
 - Allow for new styles, use, etc.
 - Leap frog current housing

Foursquare – Concord, MA

Deep Energy Retrofits 14 April 2010

12

ENERGY Energy Efficiency & Building Renewable Energy U.S. Department

DSC Science Corporation

Deep Energy Retrofit

MEASURE	PRERETROFIT	FINAL	
Foundation walls (basement)	Uninsulated 12" cut stone	R-20; 4" high density (2.0 pcf) spray polyurethane foam	
Slab insulation	None	R-10; 2" XPS insulating sheathing under slab	
Above-grade walls	Some slag wool	R-41: blown cellulose cavity insulation and two layers of 2" polyisocyanurate rigid on the exterior	
Siding	Aluminum siding over original shingles	Cedar siding over 3/4" wood strapping (rain-screen cavity)	
Band joist areas	No insulation	Cavity filled with spray polyurethane foam	
Cathedral ceilings	N/A	Two layers of 2" polyisocyanurate rigid insulation on top of roof sheathing with 6" high density (2.0 pcf) spray polyurethane foam in the existing 2x6 wood rafter	
Flat ceilings	10" loose blown slag wool	N/A	
Basement windows	Single-pane wood framed	Double-glazed, Low-E, argon- filled: U=33, SHGC=0.32; new window sill, jamb and head extensions, expanding foam sealant at window perimeter	
Above-grade windows	Single-pane wood framed with aluminum storm windows	Double-glazed, Low-E, argon- filled: U=33, SHGC=0.32; new window sill, jamb and head extensions, expanding foam sealant at window perimeter	
Exterior doors	Solid wood stile and rail	Kept existing front door	

Deep Energy Retrofits 14 April 2010

13

ENERGY Energy Efficiency & Renewable Energy

Deep Energy Retrofit

Air sealing	None	Retrofitted air barrier: spray polyurethane foam (basement, atlic roofdeck, connections between components) and corrugated housewrap at above grade walls. Low expanding foam sealant around windows	
Space heating	Original Oil Fired Boiler Circa 1916	92% AFUE sealed combustion low mass gas boiler in conditioned space	
Cooling	Window air conditioner units	14 SEER split system in conditioned space	
Thermostat	Standard – one zone	Setback - two zones	
Water heating	Naturally-aspirated gas- fired tank water heater (~0.5 EF)	0.8 EF super-insulated sidearm storage tank	
Mechanical ventilation	None	Supply-only system with outside air to return plenum of air handler; run at low speed with an ECM motor	
Spot ventilation	None	Bath exhaust fans; kitchen range exhaust fan	
Lighting	Standard Fixtures	100% Pin-based compact fluorescent lighting	
Refrigerator	Circa 1980	Energy Star	
Dishwasher	Circa 1980	Energy Star	
Clothes washer	N/A	Energy Star	
Infiltration rate	Not tested (estimated ~15 ACH 50)	2.5 sq. in. leakage area per 100 sq. ft. envelope (3 ACH 50)	
Duct leakage (to outside)	N/A (radiator system)	None; ducts located in conditioned space	
HERS Index	150+ (estimated)	49	
Estimated total annual energy use	2680 therms/7300 kWh (estimated)	731 therms/5694 kWh (modeled) 670 therms/3865 kWh (utility bills)	

Deep Energy Retrofits 14 April 2010

14

16

ENERGY Energy Efficiency & Renewable Energy

Building **bSC** Science Corporation

17

ENERGY Energy Efficiency & Renewable Energy

18

ENERGY Energy Efficiency & Renewable Energy

bsc Science Corporation

ENERGY Energy Efficiency & Renewable Energy

AMFRICA

bsc Building Science

Corporation

Drainage Plane Continuity

Rain water drains down over the shingle-lapped siding. Small amounts of water that penetrate past the cladding are drained on the insulating sheathing. Water that penetrates the insulating sheathing is carried down the wall on the draining housewrap.

Deep Energy Retrofits 14 April 2010

22

ENERGY Energy Efficiency & Renewable Energy

bsc Science Corporation

25

ENERGY Energy Efficiency & Renewable Energy

Energy Efficiency &

Building **bSC** Science

Corporation

Thermal Continuity

Deep Energy Retrofits 14 April 2010

ENERGY Energy Efficiency & Renewable Energy

bsc Building Science

Corporation

27

ENERGY Energy Efficiency & Renewable Energy

Thermal Continuity

Deep Energy Retrofits 14 April 2010

28

ENERGY Energy Efficiency & Renewable Energy

bsc Science Corporation

29

ENERGY Energy Efficiency & Renewable Energy

Vapor Barrier Continuity

100

Polyisocyanurate elevates the surface temperature of the exterior sheathing during the winter to reduce the condensation potential Semi-permeable interior latex paint finish on gypsum board reduces moisture flow from interior during winter yet still allows drying to the interior during summer

Cellulose insulation acts as a hygric buffer by safely storing moisture until it can dry to either the interior or exterior

Deep Energy Retrofits 14 April 2010

30

Vapor Barrier Continuity

Deep Energy Retrofits 14 April 2010

31

ENERGY Energy Efficiency & Renewable Energy

New Windows

Photos courtesy of Dan Morrison, Fine Homebuilding Magazine

32

DSC Science Corporation

New Windows

Deep Energy Retrofits 14 April 2010

33

Windows

Deep Energy Retrofits 14 April 2010

35

U.S. DEPARTMENT OF Energy Efficiency & Building Renewable Energy U.S. Department of

Deep Energy Retrofit

First and Second Year Performance

3500 kWh and 700 Therms

Electric @ \$.15 /kWh Gas @ \$1.50/therm Electric \$528 Gas \$1050 Electric/mth - \$44 Gas/mth = \$87

Energy Measures =

New Mechanical Systems (\$25,000), Insulation (\$25,000), and New Windows (\$20,000)

> Original oil bills \$4,000 per year Original electric \$1,500 per year

Initial Cost Of Measures	Annual Savings	Annual Finance 30 yrs @ 4.5%	Cash Flow
\$70,000	\$4005	\$4248	(\$243)

36

Residential Design and Construction 2010 14 April 2010

Energy Efficiency &
Deep Energy Retrofit

Residential Design and Construction 2010 14 April 2010

37

Building Science Corporation

Deep Energy Retrofit

Actual Performance

- Without the PV's, the house had a 72% reduction with respect to its original energy use.
- Without the PV's, the house had a 44% reduction with respect to the national average.
- With the PV's, the house had an 80% reduction with respect to the national average.

Residential Design and Construction 2010 14 April 2010

38

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Building

Corporation

Science

bsc

Deep Energy Retrofit

METRICS

- Total Energy Use is 62 MMBtu's source. National average is 190 MMBtu's source.
- Total conditioned square ft = 3600. kBtu's per sq. ft. before PV's = 33.5
- With the PV's, kBtu's per sq. ft. = 17.1

Residential Design and Construction 2010 14 April 2010

39

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Building

Corporation

Science

bsc

Lowell HFH Farmhouse, Bedford - MA

Deep Energy Retrofits 14 April 2010

U.S. DEPARTMENT OF Energy Efficiency & Control Control

Deep Energy Retrofits 14 April 2010

41

ENERGY Energy Efficiency & Renewable Energy

Deep Energy Retrofits 14 April 2010

42

ENERGY Energy Efficiency & Renewable Energy

bsc Science Corporation

Parametric Study

43 U.S. DEPARTMENT OF Energy Efficiency & Contract of Energy Efficiency & Contract of Energy Efficiency & Contract of Energy U.S. Department of Energy Efficiency & Corporation

Deep Energy Retrofits 14 April 2010

ENERGY Energy Efficiency & Building Control Co

Roof Assembly

Deep Energy Retrofits 14 April 2010

45

ENERGY Energy Efficiency & Building Efficiency & Building Efficiency & Building Efficience & Building Efficie

bsc Science Corporation

Wall Assembly

Deep Energy Retrofits 14 April 2010

46

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Building & Building

Windows

Deep Energy Retrofits 14 April 2010

47

bsc Science Corporation

Air Sealing

Deep Energy Retrofits 14 April 2010

48

ENERGY Energy Efficiency & Renewable Energy

Building

Foundation Assembly

Deep Energy Retrofits 14 April 2010

49

ENERGY Energy Efficiency & Benergy Efficiency & Comparison of Comparison

DSC Building Science Corporation

Sealed Combustion Gas Furnace

Deep Energy Retrofits 14 April 2010

50

ENERGY Energy Efficiency & Benewable Energy U.S. Department of Renewable Energy U.S. Department of

Ventilation

Deep Energy Retrofits 14 April 2010

Space Conditioning Distribution

Deep Energy Retrofits 14 April 2010

52

U.S. DEPARTMENT OF Energy Efficiency & Britizing Control Contr

bsc Science Corporation

On-Demand Gas Water Heater

Deep Energy Retrofits 14 April 2010

53

ENERGY Energy Efficiency & Benewable Energy U.S. Department of Renewable Energy

artiment of Energy

DSC Building Science Corporation

Lighting

Deep Energy Retrofits 14 April 2010

U.S. DEPARTMENT OF Energy Efficiency & Building Control of Renewable Energy U.S. Department of U.S. Department of

Appliances

Deep Energy Retrofits 14 April 2010

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Contract of Ever Renewable Energy

Rim joist

Deep Energy Retrofits 14 April 2010

56

U.S. DEPARTMENT OF Energy Efficiency & Britling Control of Renewable Energy U.S. Department of U.S. Department of

bsc Science Corporation

Window sill dam

Deep Energy Retrofits 14 April 2010

57

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Britizing Renewable Energy

Duct blaster testing

Deep Energy Retrofits 14 April 2010

58

ENERGY Energy Efficiency & Building & Construction Constr

Deep Energy Retrofits 14 April 2010

59

ENERGY Energy Efficiency & Renewable Energy

Building **bsc** Science Corporation

Deep Energy Retrofits 14 April 2010

60

Deep Energy Retrofits 14 April 2010

61

Deep Energy Retrofits 14 April 2010

62

U.S. DEPARTMENT OF Energy Efficiency & Building Million Control of Renewable Energy U.S. Department of

Deep Energy Retrofits 14 April 2010

63

ENERGY Energy Efficiency & Renewable Energy

Brilding

57 Depot Street prior to construction

Deep Energy Retrofits 14 April 2010

64

- Project Overview
 - Builder: Warren Construction Group
 - Location: Freeport, ME
 - Cold (6A) Climate:
 - Type: Single Family
 - Stories: 2
 - Bedrooms: 3
 - 1.5 Baths:
 - Floor Area: 1,600 sq.ft.
 - Basement Area: 886 sq.ft.

Deep Energy Retrofits 14 April 2010

65

Source Energy Savings

Source Energy Parametric Annual Loads Study

Deep Energy Retrofits 14 April 2010

66

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Building & Renewable Energy

Roof R-50

Deep Energy Retrofits 14 April 2010

ENERGY Energy Efficiency & Renewable Energy

bsc Building Science

Corporation

Deep Energy Retrofits 14 April 2010

69

Foundation, Slab R-10, Walls R-12

Deep Energy Retrofits 14 April 2010

70

ENERGY Energy Efficiency & Renewable Energy

Berletts Road House, Waterloo - Ontario

Deep Energy Retrofits 14 April 2010

71

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Building America Renewable Energy U.S. Department

bsc Science Corporation

- Interior retrofit limits improvements to airtightness, rain control, thermal bridge
- Exterior allows excellent improvements and increased durability
- Windows should be done at the same time
- Installation cost \$200+/- so get good windows, eg vinyl triple glazed for \$30/sf

Deep Energy Retrofits 14 April 2010

77

ENERGY Energy Efficiency & Renewable Energy

Deep Energy Retrofits 14 April 2010

78

ENERGY Energy Efficiency & Comparison of Renewable Energy U.S. Department of Renewable Energy U.S. Department of

DSC Science Corporation

- Important choice!
- Need better rain control
- Improved R-value of course

Deep Energy Retrofits 14 April 2010

87

Fully Vented Attics

- Can re-roof whenever, with whatever
- Deal with moisture, then add insulation
 - Rain leaks, air leaks
- If possible, keep ventilated attic
 - Inspect ceiling plane, plug all holes with caulking and foam
 - Consider 1" of spray foam air barrier
 - Blow in minimum R60 cellulose, R75-R100 sensible

Joseph Lsuburek – Repair & Retront 90

Energy/Economy

- Energy-related upgrades cost :\$25K
 - Heat-pump, ducts, HRV \$6000+2000+500
 - Basement/walls insulation \$5200+4200
 - Windows \$5000+ 2500
 - Attic \$1250
- Many other upgrades: bed, bath, flooring, basement double floor space (another 30K)
- Savings: ca \$2000 / yr

Clark Residence – Belchertown, MA

Deep Energy Retrofits 14 April 2010

93

ENERGY Energy Efficiency & Britaing Renewable Energy U.S. Department of Renewable Energy

DSC Building Science Corporation

Parametric Study

Deep Energy Retrofits 14 April 2010

94

ENERGY Energy Efficiency & Renewable Energy

Building Profile

Deep Energy Retrofits 14 April 2010

Roof Assembly

Deep Energy Retrofits 14 April 2010

96

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy U.S. Department of E

DSC Science Corporation

Wall Assembly

Deep Energy Retrofits 14 April 2010

97

DSC Science Corporation

Windows

Deep Energy Retrofits 14 April 2010

98

Air Sealing

Deep Energy Retrofits 14 April 2010

99

U.S. DEPARTMENT OF Energy Efficiency & BnitZing Construction of Energy Efficiency & BnitZing Construction of Energy Efficiency & Construct

Foundation Assembly

Deep Energy Retrofits 14 April 2010

100

ENERGY Energy Efficiency & British Construction Constru

DSC Building Science Corporation

Sealed Combustion Propane Furnace

Deep Energy Retrofits 14 April 2010

101

U.S. DEPARTMENT OF Energy Efficiency & Britishing Control of Contr

ding

Ventilation

Deep Energy Retrofits 14 April 2010

102

Space Conditioning Distribution

Deep Energy Retrofits 14 April 2010

103

U.S. DEPARTMENT OF Energy Efficiency & BRILDING Renewable Energy U.S. Department

On-Demand Propane Water Heater

Deep Energy Retrofits 14 April 2010

ENERGY Energy Efficiency & Building Renewable Energy U.S. Department of Control Contro

Lighting

Deep Energy Retrofits 14 April 2010

Appliances

Deep Energy Retrofits 14 April 2010

Window installation

Deep Energy Retrofits 14 April 2010

ENERGY Energy Efficiency & Renewable Energy

DSC Science Corporation

Soffit

Deep Energy Retrofits 14 April 2010

Ceiling Deck

Deep Energy Retrofits 14 April 2010

Duct blaster testing

Deep Energy Retrofits 14 April 2010

110

ENERGY Energy Efficiency & Benewable Energy U.S. Department of Renewable Energy

Design Challenge

Deep Energy Retrofits 14 April 2010

111

U.S. DEPARTMENT OF Energy Efficiency & Britizina Control Contr

DSC Science Corporation

Design Challenge

Deep Energy Retrofits 14 April 2010 112 U.S. DEPARTMENT OF Energy Efficiency & Corporation Building Science Corporation

For More Information Go To:

www.buildingscience.com

Search Info and Recent Presentations

www.affordablecomfort.org

See Thousand Home Challenge

www.powerofaction.com

National Grid's Deep Energy Retrofit Program

113

Deep Energy Retrofits 14 April 2010 U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Science Corporation