

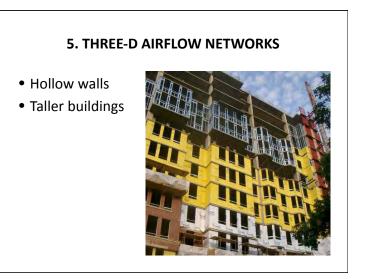
BECAUSE BUILDINGS ARE CHANGING.

BECAUSE (ENVIRONMENTAL) PERFORMANCE MATTERS.

1. INCREASING THERMAL RESISTANCE

- Old buildings used energy leakage to dry materials and assemblies
- Increased airtightness
 - -Reduces drying, interior RH increases
- Increased insulation = less drying
 - -Colder exterior, colder interior
 - -Wider swings
- White roofs, efficient lights, etc

2. CHANGE PERMEABILITY OF LININGS


- Low permeance exterior layers
 - -Metal panels, precast concrete
 - -OSB and foam vs skip wood sheathing
- Low permeance interior layers
 - -Polyethylene, vinyl wall paper
 - -Vinyl sheet flooring

3. WATER SENSITIVITY OF MATERIALS

- Moisture= mold growth
- Wood products
 - -New growth vs old
 - -Processing: plywood, OSB, particle board
 - -Paper, Veneers
- Finishes
 - Drywall, ceiling tile

4. MOISTURE STORAGE CAPACITY

- Changing moisture storage
 - -Concrete block / terra cotta
 - -Rough cut wood / skip sheathing
 - -Steel stud with exterior gypsum
- Orders of magnitude!
- Lightweight often low-impact

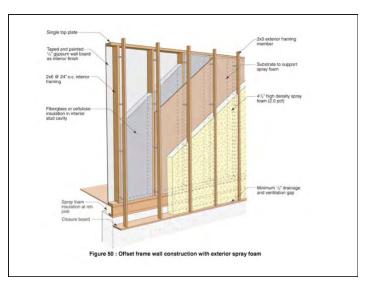
FIVE FUNDAMENTAL CHANGES

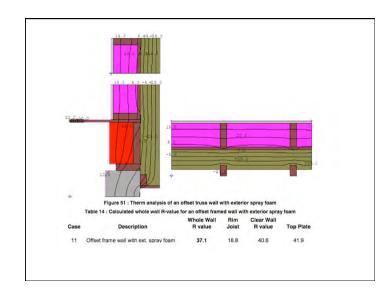
- 1. Increasing Thermal Resistance
- 2. Changing Permeance of Enclosure Linings
- 3. Water/Mold Sensitivity of Materials
- 4. Moisture Storage Capacity
- 5. 3-D Airflow Networks

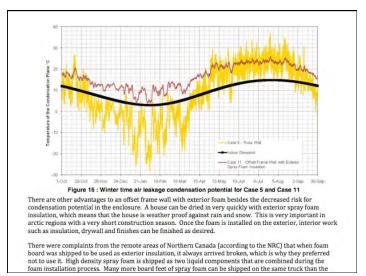
Building America Special Research Project: High-R Walls Case Study Analysis

Research Report - 0903 March 11, 2009 (rev. 8/7/09)

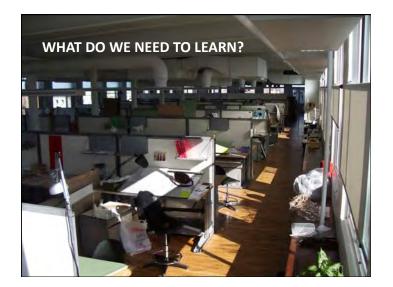
John Straube and Jonathan Smegal


Abstract:


Many conterns, including the rising out of energy, idimate change sourcers, and domands for increased conflort, have load to the dairs for increased instalation level in many new and oxizing haidings. More building outs are being monifold on to paper higher level of chemail anoth that one reloy. This report excisions a anasher of primating and systems that can send the requirements for better thermal content. Usable primais makes, this one consistent performance is a more readility matter to the true three dimensional beas flow and the relative risk of motitane damage. <u>Whole wall</u> R-values for all of the assemblies were calculated using Therm and the summary is shown in <u>Table 16 below</u>. In some of the analyzed cases, different types or thicknesses of insulation may be used depending on climate zone and local building practice. An attempt was made to choose the most common strategies and list all assumptions made for wall construction.


		Whole Wall	Rim	Clear Wall	
Case	Description	R-value	Joist	R-value	Top Plate
1bii	2x4, 16"oc, R13FG + OSB (25%ff)	10.0	9.8	10.1	9.8
1b	2x4 AF, 24"oc, R13FG + OSB	11.1	9.8	11.5	9.8
1aii	2x6, 16"oc, R19FG + OSB (25%ff)	13.7	12.3	14.1	12.5
6a	SIPs (3.5" EPS)	14.1	12.3	14.5	10.6
1a	2x6 AF, 24"oc, R19FG + OSB	15.2	12.3	16.1	12.5
7a	ICF - 8" foam ICF (4" EPS)	16.4		16.4	
8b	2x6 AF, 24" o.c., 5.5" R21 0.5 pcf SPF, OSB	16.5	13.1	17.2	16.6
7c	ICF - 14" cement woodfiber ICF with Rockwool	17.4		17.4	
9	2x6 AF, 24"oc, 2" SPF and 3.5" cellulose	17.5	13.2	18.4	17.7
8a	2x6 AF, 24" o.c., 5" 2 pcf R29 SPF, OSB	19.1	13.6	20.3	19.5
2a	2x6 AF, 24"oc R19FG + 1" R5 XPS	20.2	18.5	20.6	20.3
7b	ICF - 15" foam ICF (5" EPS)	20.6		20.6	
3	2x6 AF, 24"oc, 2x3 R19+R8 FG	21.5	13.4	23.5	18.4
4	Double stud wall 9.5" R34 cellulose	30.1	14.4	33.5	28.8
12	2x6 AF, 24"oc, EIFS - 4" EPS	30.1	23.8	31.4	31.1
10	Double stud with 2" 2.0 pcf foam, 7.5" cell.	32.4	15.9	36.2	28.5
2b	2x6 AF, 24"oc R19FG + 4" R20 XPS	34.5	29.0	35.6	35.4
6b	SIPs (11.25" EPS)	36.2	14	41.6	28.2
5	Truss wall 12" R43 cellulose	36.5	18.6	40.5	34.4
11	Offset frame wall with ext. spray foam	37.1	18.8	40.6	41.9
	*AF - Advanced Framing				

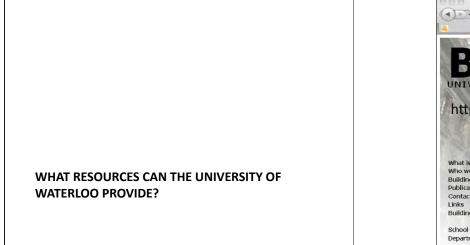
analysis and research may be required before installing spray foam directly on housewraps.



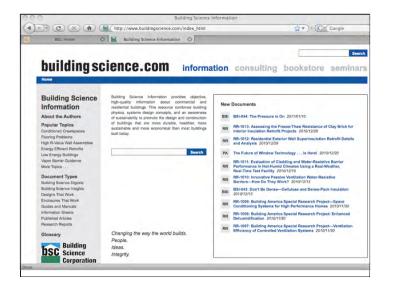
EVALUATE MATERIALS AND SYSTEMS UNDERSTAND CLIMATE LOADS AND CONDITIONS THAT AFFECT ENCLOSURE AND MECHANICAL SYSTEM PERFORMANCE

Architecture Students

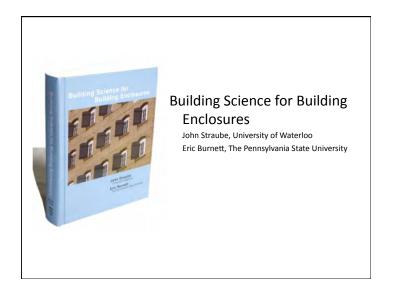
-Undergraduate


- Core courses: Construction technology (2), HVAC course, Building Science
- Design Studio
 - we are trying! (students want this and there is a willingness on the part of the faculty)
 - 4th year Comprehensive Building Design course
- -Graduate
 - Building Enclosures and Mechanical Systems
 - Special Topics in Sustainable Design

Engineering Students


- Undergraduate

- Learn about heat and gas and fluid dynamics (builds on other standard engineering courses) Calculate dew point, air leakage condensation, air flow through holes, 1 and 2 D heat flow. Background to computer calculations. Demonstration WUFI – but spreadsheet calculation only unless fundamentals are well understood
- Other engineering courses: Mechanical Engineering energy transfer in buildings (process, equipment), new course on low energy building mechanical systems, new course on modeling for sustainable energy technology
- Graduate
 - Building Physics
 - Computer modeling
 - · Renewable energy systems courses



Building Science Information	BSI Building Science Insights				
About the Authors Popular Topics	Insights are short discussions on a particular topic of general interest. They are intended to highlight one or more building scien discussion is informal and sometimes irreverent but never irrelevant.				
Conditioned Crawlspaces Flooring Problems High R-Value Wall Assemblies	Search Filters				
Energy Efficient Retrofits Low Energy Buildings	1-20 of 45 Items	1 2 3			
Vapor Barrier Guidance More Topics	BSI BSI-001: The Perfect Wall	By J Down			
Document Types Building Science Digests Building Science Insights	BSI BSI-002: The Hollow Building	By J Down)			
Designs That Work Enclosures That Work Guides and Manuals	BSI BSI-003: Concrete Floor Problems	By J Down			
Information Sheets Published Articles Research Reports	BSI BSI-004: Drainage, Holes and Moderation	By J Downi			
Glossary	BSI BSI-005: A Bridge Too Far	By J Down)			
	BSI BSI-006: Can Highly Glazed Building Façades Be Green?	E Down			
	BSI BSI-007: Prioritizing Green—It's the Energy Stupid*	By J Downi			
	BSI BSI-008: The Building Science of Bourbon	By J Down			
	BSI BSI-009: New Light In Crawlspaces	By J Down			

understanding of the theory and translating this theory to practical information.	dvice is given with a focus on establishin
BSD BSD-007: Historical Development of the Building Enclosure	By John Straub Download.pdf 736.1 ki
BSD BSD-010: Looking at Tomorrow	By John Straub Download.pdf 94.7 kt
BSD BSD-011: Thermal Control in Buildings	By John Straub Download.pdf 555.2 kb
BSD BSD-012: Moisture Control for New Residential Buildings	By Joseph Lstibure Download.pdf 4.6 Mi
BSD BSD-013: Rain Control in Buildings	By John Straub Download.pdf 966.2 kb
BSD BSD-014: Air Flow Control in Buildings	By John Straub Download.pdf 1.5 Mi
BSD BSD-018: The Building Enclosure	By John Straub Download.pdf 585.3 k
BSD BSD-030: Rain Control Theory	By John Straub Download.pdf 1.3 M
BSD BSD-102: Understanding Attic Ventilation	By Joseph Lstibure Download.pdf 5.1 MB

Search Filters	
1-15 of 15 items	
GM Attic Air Sealing Guide and Details	By Joseph Lstibure Download.pdf 5.7 M
BSD BSD-114: Interior Insulation Retrofits of Load-Bearing Masonry Walls In Cold Climates	By John Straub Download.pdf 1.2 MB
BSD BSD-139: Deep Energy Retrofit of a Sears Roebuck House—A Home for the Next 100 Years	By Batay Pettit, FAI/ Download pdf 3.4 Mil
BSI-013: Face Lift for Old Buildings	By Joseph Lstibure Download.pdf 1.1 M
BSI-018: Westford House	By Joseph Lstibure Download.pdf 4.3 MB
BSI BSI-035: We Need to do it Different This Time	By Joseph Latibure Download.pdf 576.0 kB
BSI-041: Rubble Foundations	By Joseph Lstibure Download.pdf 3.1 MB
BSI BSI-043: Don't Be Dense-Cellulose and Dense-Pack Insulation	By Joseph Lstibure Download pdf 1.4 MB
DTW Cold Climate: Bedford Farmhouse High Performance Retrofit Prototype	Download.pdf 6.1 MB

- John Straube, Ph.D., P.Eng.
 - Principal of Building Science Corporation and, of course, a faculty member in the Department of Civil Engineering and the School of Architecture at the University of Waterloo
 - Contact him at: john@buildingscience.com
 - Contact me at: alex@buildingscience.com