The Development & Evolution of Prefabricated Mass Timber Façades

XXIV - Westford Symposium on Building Science - Summer Camp, August 3, 2022

Graham Finch, MASc, P.Eng Principal, Senior Building Science Specialist

... or aside from mass timber: "How to De-risk New & Innovative Façade Systems"

Site Built & Prefabricated

How is Mass Timber Changing the Status Quo?

A Confluence of Drivers Leading to Next Generation Prefabricated Façade Systems for High-rise Buildings

PRACTICAL. Speed, Cost & Local Labor Availability

ENVIRONMENTAL: Energy Efficiency (PH/NZ) & Low Carbon

Energy Efficiency Impacts on Façade = Walls First Instead of Windows

Pre-fabricated Facades for High-rises & Mass Timber

Mass Timber as the Catalyst

Steel Framed Prefabricated Facade

High-rise = Site-Built vs. Prefabricated Façades

(market, design and speed dependent)

High-rise + Passive House = Site-Built vs. Prefabricated Façades

RDH

High-rise + Passive House + Mass Timber Structure = Prefabricated Façades

owards Prefabricated ass Timber Facades

The Carbon Argument for Mass Timber Facades

\rightarrow **Operating** Carbon

- → Carbon equivalent emitted as part of operation and maintenance
- \rightarrow Reduced with *energy efficiency measures (ie NZ/PH)*
- ightarrow Embodied Carbon
 - Cumulative equivalent emitted carbon from acquisition, manufacture, transport, and installation of material
 - Reduced with *low carbon* or *carbon sequestering* materials (ie wood)

Trend - In jurisdictions with low carbon energy grids and energy efficient building standards - embodied carbon is becoming increasingly scrutinized

Embodied Carbon Benefits of Mass Timber Facades

Embodied Carbon Comparison (A1-A4 regionally produced) for Large Format Façade Panels with Windows with Structure comparison for: Mass Timber (CLT and LVL/MPP, Steel Frame, Aluminum Frame w/ IMP and Pre-cast Concrete

Zero Carbon Potential of Mass Timber Facades

Embodied Carbon Comparison (A1-A4) for Mass Timber:

- without CO₂ sequestration due to end-of-life negation
- with CO₂ sequestration to understand "short" term benefits

What will happen to our mass timber buildings in 50 years?

For now, value in "flattening the curve" of CO_2 emissions.

Wood can sequester carbon until we can solve the climate crisis

Tall Wood Fire Protection = Encapsulation and/or Char

Tall Wood Facades - Fire Resistance, Exterior Fire Spread & Firestopping Performance

Tall Wood Façade Fire Protection

Generally 1 hr fire ratings required for non-load bearing walls and 2hr ratings for load bearing walls

Tall Wood Façade & Building Movement Considerations

Low-rise only due to shrinkage of wood

RDH

Low to mid-rise, or taller where exterior load bearing walls

Non-load bearing exterior wall applications – i.e. most tall buildings

Hanging Non-Load Bearing Facades

Façade Technical Performance Criteria

 \rightarrow Don't break and/or fall off!

Imposed structural loads: wind, seismic, building movement, thermal movement, possibly blast and impact resistance

→Don't leak!

 \rightarrow Wind driven rain, air leakage (rate)

 \rightarrow Don't Sweat!

 \rightarrow Condensation resistance, thermal performance

 \rightarrow Don't Burn!

 \rightarrow Fire performance, combustibility

 \rightarrow Look Good!

 \rightarrow Sound Good!

ightarrowAddressed by a combination of engineering, physical testing, &

RDH installed experience

De-risking New Prefabricated Façade Systems

Façade Performance Mockup (PMU)

PMU Support Structure

Typical PMU Test Procedure

Construct & Pre-Load

- 1. Air Leakage Rate
- 2. Static Pressure Water Penetration
- 3. Dynamic Pressure Water Penetration
- 4. Structural Wind Load (Design Pressure)
- 5. Repeat Air & Water Leakage
- 6. Vertical Inter-Storey Displacement (Design Movement)
- 7. Repeat Air and Water Leakage
- 8. Elastic Lateral Inter-Storey Drift Displacement
- 9. Repeat Air and Water Leakage
- 10.Thermal Cycling and Condensation Resistance
- 11.Repeat Air and Water Leakage
- 12.Structural Wind Load (Proof Loading, 150% Design pressure)
- 13.Inelastic Lateral Inter-Storey Drift Displacement

Air Leakage Diagnostics

Dynamic Pressure Water Penetration

(AAMA 501.1 @ design driving rain wind speed/pressure)

TEST LOADS

Vertical Inter-Storey Displacement

RDH

(AAM 501.7 @ design vertical displacement - e.g., due to live load, structure movement, creep, seismic, wind)

TEST LOADS

Elastic Lateral Inter-Storey Displacement

(AAM 501.4 @ design horizontal movement caused by seismic event or significant wind event on structure causing inter-storey drift

Horizontal Displacement

Thermal Cycling and Condensation Resistance

(AAMA 501.5 @ design temperature range & winter design indoor T/RH) TEST LOADS

TEST LOADS

Inelastic Lateral Inter-Storey Displacement

(AAM 501.4 @ design horizontal movement caused by significant seismic event on structure causing inter-storey drift

Horizontal Displacement

Fire Testing

Additional Security & Safety Testing

Blast resistance, hurricane/wind blown debris resistance, security & impact resistance

Wood Façade Developments & Evolution to Date

UBC Tall Wood – First Steps Towards Prefabricated Mass Timber Facades

Prefabricated Facade System Competition

Prefabricated wood, steel, & concrete façade systems all prototyped, built and judged

Steel Frame Prefabricated Façade for Tall Wood

Exterior Envelope Layers

- Wood fibre laminated panels
 + punched windows
- B. Stone-wool insulation
- C. Liquid-applied membrane
- D. Weather-proof drywall
- E. Steel studs

Interior Envelope Layers

- F. Batt insulation
 - + vapour barrier
- G. Drywall

Alternate Mass Timber Prefabricated Façade Option

Mass timber back-up wall structure. 3 or 5-ply CLT. 1

Vapour permeable and WRB. Multiple products available but self-2 adhered membrane recommended for ease of install.

Punched windows installed to specifications. Step is omitted if curtain 3 or window walls are specified.

)Thermal clip and rail cladding attachment. Cheaper option to install hat (5) Exterior mineral insulation of required thickness. 4 tracks or Z-girts pinned through insulation with long screws. Cladding is to include an exterior air gap for rainscreen cavity.

WSS. Cladding of choice must be durable as it experiences frequent 6 wetting and drying cycles. Flashing detail is critical where panels join.

Façade Performance Mockup (PMU) Testing

The Wet Seal - Water and Air Control from Inside

Horizontal Section at Floor Slab

Structural Silicone Elastic Drift Movement

Field Commissioning

First Generation Panelized Mass Timber Facade

Net Zero Performance Goal, Passive House Building Enclosure & Airtightness Goals

Mass Timber Structure

Prefabricated CLT Façade Panels to Cladding Supports

Very Flexible Air & Water Seals

Structural Connection

Structural Brackets (2 Storey Hung Panels, Gravity Mid, Wind Top, Wind Bottom)

The PMU...

- Typical vertical joint
- Typical horizontal joint
- Typical corner joint
- Typical 4-way joint
- Window installation

The Site PMU

Air Leakage Testing – Qualitative Results

Water Penetration Testing

What to Do? Inspect All Seals, Repair and Verify Fixes

RDH

100% Joint QA/QC Works!.. But Need to be Simpler

Airtightness Success: 0.034 cfm/ft²@75 Pa < 0.08 PHIUS target

The "Not So Hot" Wood Veneer Curtainwall Side-Track & PMU Lessons

Continuing to Tinker

The Next Catalyst for Prefab Mass Timber Facades

Perkins&Will
DELTA GROUP

Façade Design and Prototype Competition

- →Created to get ahead of the need for a low carbon, low energy, woodbased façades for mass timber buildings
- \rightarrow Approached over 40 companies across Canada and the US
 - →Included façade contractors, existing façade system manufacturers (steel, curtainwall, concrete, wood, window), mass timber producers, wood prefabricators, modular builders, new startups in sector
- \rightarrow 1 partial, 5 complete/viable product entries received and narrowed down to a top 3 based on competition criteria
 - \rightarrow Top 3 each contracted to produce small scale mock-up
 - \rightarrow Top team contracted for performance mockup

Key Design Parameters

- Wood as primary structural element, exposed if possible where allowed*
- \rightarrow Entirely prefabricated w/ exceptions*
- →Flexibility in design concept and pairing of punched windows, large balcony doors, adjoining curtainwall, roof decks etc.
- Suitable for high-rise buildings in high seismic regions
- →Meet stringent fire code requirements for tall wood buildings through design and later testing

Key Design Parameters

- Thermally efficient and suitable for Passive House projects
 - \rightarrow ~R-40 walls, R-6+ windows
 - Minimal bridging at balconies and other penetrations (<10% reduction in performance)
 - ightarrow Extremely airtight
- Cost effective, competitive vs. other systems of similar performance
- \rightarrow Durable, high-rise water tightness
- Dow embodied carbon, sustainably harvested wood
- \rightarrow Socially equitable manufacturing

Scoring & 6 Entries

- ightarrow Use of Wood
- ightarrow Acceptance by Building Code
- ightarrow Acceptance by Fire Code
- ightarrow Design Flexibility
- ightarrow Aesthetics
- ightarrow Durability
- ightarrow Acoustics
- ightarrow Thermal Performance
- ightarrow Constructability
- ightarrow Sustainable Wood
- ightarrow Social Equity
- $ightarrow \mathsf{Cost}$
- ightarrow Manufacturing Experience
- ightarrow Engineering Experience
- ightarrow Façade Systems Experience
- ightarrow Overall Submittal

F3 Timber Technologies

The 6 Entries

The 6 Entries

The Top 3

SIDE WALK LABS

Katerra

RDH

Sidewalk Labs

A Lot of Similarities in Approach & Fabrication

Same: Wood Structure, Dry Joints, AB/WRB on Wood, MW Insulation, Cladding Support, Rainscreen Cladding

Trial PMU Assembly & Acoustic Testing

Full Scale PMU Assembly

PMU Testing

Fire Testing (NFPA 285 - Facade)

Pass! Wood & WRB didn't even know there was a fire

Fire Testing (ASTM E2307 – Slab Edge Smoke/Fire)

Pass!, 2 & 3 hour floor slab edge to wood façade smoke seal/fire protection options

Parallel Work - Prefabricated MT/Steel Balconies

The Growing Market for Mass Timber Facades

- Tall mass timber buildings need prefabricated façade systems for speed & moisture and fire protection during construction
- → Systems need to be more thermally efficient to meet more stringent energy codes – typically means more opaque wall than glazed area
- Mass timber systems (3 so far) have all demonstrated ability to meet the demanding needs of high-rises in high seismic zones
- → Cost so far is comparable to cold-form steel framed and a bit less than aluminum (the wood structure is a relatively cheap component of the system)
- Mass timber systems can be carbon neutral as wood sequestration can offset other materials (insulation, cladding, finishes, structural connections etc.)

Discussion + Questions

gfinch@rdh.com

Learn more at rdin.com

