The Development \& Evolution of Prefabricated Mass Timber Façades

XXIV - Westford Symposium on Building Science - Summer Camp. August 3, 2022

Graham Finch, MASc, P.Eng
Principal, Senior Building Science Specialist

RDH

... or aside from mass timber: "How to De-risk New \& Innovative Façade Systems"

RDH

How is Mass Timber Changing the Status Quo?

A Confluence of Drivers Leading to Next Generation Prefabricated Façade Systems for High-rise Buildings

Energy Efficiency Impacts on Façade = Walls First Instead of Windows

Pre-fabricated Facades for High-rises \& Mass Timber

High-rise
 Site-Built vs. Prefabricated Façades

(market, design and speed dependent)

RDH

High-rise $+$
 Passive House
 Site-Built vs: Prefabricated Façades

RDH

High-rise $+$
 Passive House
 $+$
 Mass Timber Structure
 Prefabricated Façades

RDH

High-rise $+$
 Passive House
 $+$
 Mass Timber Structure
 $+$
 Low Carbon Goals
 Prefabricated Wood-based Façades

RDH

The Wood Facade Aesthetic Argument

The Carbon Argument for Mass Timber Facades

\rightarrow Operating Carbon
\rightarrow Carbon equivalent emitted as part of operation and maintenance
\rightarrow Reduced with energy efficiency measures (ie NZ/PH)
\rightarrow Embodied Carbon
\rightarrow Cumulative equivalent emitted carbon from acquisition, manufacture, transport, and installation of material
\rightarrow Reduced with low carbon or carbon sequestering materials (ie wood)
\rightarrow Trend - In jurisdictions with low carbon energy grids and energy efficient building standards - embodied carbon is becoming increasingly scrutinized

Embodied Carbon Benefits of Mass Timber Facades

Embodied Carbon Comparison (A1-A4 regionally produced) for Large Format Façade Panels with Windows with Structure comparison for: Mass Timber (CLT and LVL/MPP, Steel Frame, Aluminum Frame w/ IMP and Pre-cast Concrete

Zero Carbon Potential of Mass Timber Facades

Embodied Carbon Comparison (A1-A4) for Mass Timber:

- without CO_{2} sequestration due to end-of-life negation
- with CO_{2} sequestration to understand "short" term benefits

What will happen to our mass timber buildings in 50 years?

For now, value in "flattening the curve" of CO_{2} emissions.

Wood can sequester carbon until we can solve the climate crisis

Tall Wood Fire Protection = Encapsulation and/or Char

Exposed CLT - with 103 mm char provides 120 min FRR $(0.8 \mathrm{~mm} / \mathrm{min} \times 120 \mathrm{~min}+7 \mathrm{~mm})$ per CSA 086 Annex B

Tall Wood Facades - Fire Resistance, Exterior Fire Spread \& Firestopping Performance

Tall Wood Façade Fire Protection

Generally 1 hr fire ratings required for non-load
 bearing walls and 2 hr ratings for load bearing walls

Tall Wood Façade \& Building Movement Considerations

Low-rise only due to shrinkage of wood
RDH

Low to mid-rise, or taller where exterior load bearing walls

Non-load bearing exterior wall applications - i.e. most tall buildings

Hanging Non-Load Bearing Facades

Façade Technical Performance Criteria

\rightarrow Don't break and/or fall off!
\rightarrow Imposed structural loads: wind, seismic, building movement, thermal movement, possibly blast and impact resistance
\rightarrow Don't leak!
\rightarrow Wind driven rain, air leakage (rate)
\rightarrow Don't Sweat!
\rightarrow Condensation resistance, thermal performance
\rightarrow Don't Burn!
\rightarrow Fire performance, combustibility
\rightarrow Look Good!
\rightarrow Sound Good!
\rightarrow Addressed by a combination of engineering, physical testing, \&
RDH installed experience

Avoid This

De-risking New Prefabricated Façade Systems

Façade Performance Mockup (PMU)

Temperature Difference

RDH

PMU Support Structure

RDH

PMU Testing

Typical PMU Test Procedure

Construct \& Pre-Load

1. Air Leakage Rate
2. Static Pressure Water Penetration
3. Dynamic Pressure Water Penetration
4. Structural Wind Load (Design Pressure)
5. Repeat Air \& Water Leakage
6. Vertical Inter-Storey Displacement (Design Movement)
7. Repeat Air and Water Leakage
8. Elastic Lateral Inter-Storey Drift Displacement
9. Repeat Air and Water Leakage
10. Thermal Cycling and Condensation Resistance
11.Repeat Air and Water Leakage
11. Structural Wind Load (Proof Loading, 150\% Design pressure)
12. Inelastic Lateral Inter-Storey Drift Displacement

Air Leakage / Infiltration Rate

(ASTM E283 @ 300 Pa \& other measurement points)

TEST LOADS

Pressure

AR flow raty ETOJTROM TEST ciambicr miasurid TO DTTEMNE NR LEAKAGI

RDH

Air Leakage Diagnostics

RDH

Static Pressure Water Penetration

(ASTM E331 @ design driving rain test pressure, 720 Pa max)

RDH

Dynamic Pressure Water Penetration
 (AAMA 501.1 @ design driving rain wind speed/pressure)

Structural Wind Loading
 (ASTM E330 @ design wind speed/pressure)

RDH

Vertical Inter-Storey Displacement

(AAM 501.7 @ design vertical displacement - e.g., due to live load, structure movement, creep, seismic, wind)

TEST LOADS

Vertical Displacement

RDH

Elastic Lateral Inter-Storey Displacement

 (AAM 501.4 @ design horizontal movement caused by seismic event or significant wind event on structure causing inter-storey drift \qquad

Thermal Cycling and Condensation Resistance

(AAMA 501.5 @ design temperature range \& winter design indoor T/RH)

RDH

Structural Proof Wind Loading

 (ASTM E330 @ 150\% design wind speed/pressure)

RDH

Inelastic Lateral Inter-Storey Displacement (AAM 501.4 @ design horizontal movement caused by significant seismic event on structure causing inter-storey drift \qquad

RDH

Fire Testing

ASTM E2307 TEST ASSEMBLY

RDH

Additional Security \& Safety Testing

Blast resistance, hurricane/wind blown debris resistance, security \& impact resistance

UBC Tall Wood - First Steps Towards Prefabricated Mass Timber Facades

RDH

Prefabricated Facade System Competition

Steel Frame Prefabricated Façade for Tall Wood

Exterior Envelope Layers
A. Wood fibre laminated panels

+ punched windows
B. Stone-wool insulation
C. Liquid-applied membrane
D. Weather-proof drywall
E. Steel studs

Interior Envelope Layers

F. Batt insulation

+ vapour barrier
G. Drywall

RDH

Alternate Mass Timber Prefabricated Façade Option

(1) Mass timber back-up wall structure. 3 or 5 -ply CLT.

(4) Thermal clip and rail cladding attachment. Cheaper option to install hat tracks or Z-girts pinned through insulation with long screws. Cladding is to include an exterior air gap for rainscreen cavity.
is to include an exterior air gap for rainscreen canity.

(2) Vapour permeable and WRB. Multiple products available but selfadhered membrane recommended for ease of install.

(5) Exterior mineral insulation of required thickness.
(3) Punched windows installed to specifications. Step is omitted if curtain or window walls are specified.

(6) WSS. Cladding of choice must be durable as it experiences frequent wetting and drying cycles. Flashing detail is critical where panels join.

Façade Performance Mockup (PMU) Testing

RDH

The Wet Seal - Water and Air Control from Inside

Horizontal Section at Floor Slab

RDH

Structural Silicone Elastic Drift Movement

RDH

Field Commissioning

First Generation Panelized Mass Timber Facade

Prefabricated CLT Façade Panels to Cladding Supports

- Very Flexible Air \& W/ter Seals

Structural Connection

The Very fexible Wet Seal

The PMU...

- Typical vertical joint
- Typical horizontal joint
- Typical corner joint
- Typical 4-way joint
- Window installation

The Site PMU

Air Leakage Testing - Qualitative Results

Water Penetration Testing

What to Do? Inspect All Seals, Repair and Verify Fixes

RDH

100\% Joint QA/QC Works!.. But Need to be Simpler

RDH

Airtightness Success:

0.034 cfm/ft²@75 Pa < 0.08 PHIUS target

The "Not So Hot" Wood Veneer Curtainwall Side-Track \& PMU Lessons

Continuing to Tinker

RDH

The Next Catalyst for Prefab Mass Timber Facades

Perkins\&Will

DELT^ GROUP

Façade Design and Prototype Competition

\rightarrow Created to get ahead of the need for a low carbon, low energy, woodbased façades for mass timber buildings
\rightarrow Approached over 40 companies across Canada and the US
\rightarrow Included façade contractors, existing façade system manufacturers (steel, curtainwall, concrete, wood, window), mass timber producers, wood prefabricators, modular builders, new startups in sector
$\rightarrow 1$ partial, 5 complete/viable product entries received and narrowed down to a top 3 based on competition criteria
\rightarrow Top 3 each contracted to produce small scale mock-up
\rightarrow Top team contracted for performance mockup

Key Design Parameters

\rightarrow Wood as primary structural element, exposed if possible where allowed*
\rightarrow Entirely prefabricated w/ exceptions*
\rightarrow Flexibility in design concept and pairing of punched windows, large balcony doors, adjoining curtainwall, roof decks etc.
\rightarrow Suitable for high-rise buildings in high seismic regions
\rightarrow Meet stringent fire code requirements for tall wood buildings through design and later testing

Key Design Parameters

\rightarrow Thermally efficient and suitable for Passive House projects
$\rightarrow \sim R-40$ walls, $\mathrm{R}-6+$ windows
\rightarrow Minimal bridging at balconies and other penetrations (<10\% reduction in performance)
\rightarrow Extremely airtight
\rightarrow Cost effective, competitive vs. other systems
 of similar performance
\rightarrow Durable, high-rise water tightness
\rightarrow Low embodied carbon, sustainably harvested wood
\rightarrow Socially equitable manufacturing

Scoring \& 6 Entries

\rightarrow Use of Wood
\rightarrow Acceptance by Building Code
\rightarrow Acceptance by Fire Code
\rightarrow Design Flexibility
\rightarrow Aesthetics
\rightarrow Durability
\rightarrow Acoustics
\rightarrow Thermal Performance
\rightarrow Constructability
\rightarrow Sustainable Wood
\rightarrow Social Equity
\rightarrow Cost
\rightarrow Manufacturing Experience
\rightarrow Engineering Experience
\rightarrow Façade Systems Experience
\rightarrow Overall Submittal

SIDE WALK/LABS
椔KATERRA

AF3 Timber Technologies

The 6 Entries

Q
F3 Timber Technologies

The 6 Entries

SIDE WALK|LABS

The Top 3

(2) elewens

(1) Elewens

Katerra

$\|_{k} /{ }_{\ll} K A T E R R A$

悩KATERRA

PLAN VIEW

顺KATERRA

㮇KKATERRA

RDH

Sidewalk Labs

$\frac{\text { SIDE WALIT }}{\text { LLABS] }}$

SIDEIWALK LABS

$\frac{\text { SIDE WALK }}{\text { LABSS }}$

A Lot of Similarities in Approach \& Fabrication

Same: Wood Structure, Dry Joints, AB/WRB on Wood, MW Insulation, Cladding Support, Rainscreen Cladding

Trial PMU Assembly \& Acoustic Testing

Full Scale PMU Assembly

PMU Testing

Fire Testing (NFPA 285 - Facade)

Pass! Wood \& WRB didn't even know there was a fire

Fire Testing (ASTM E2307 - Slab Edge Smoke/Fire)

ASTM E2307 TEST ASSENBLY

Pass!, 2 \& 3 hour floor slab edge to wood façade smoke seal/fire protection options

Parallel Work - Prefabricated MT/Steel Balconies

RDH

The Growing Market for Mass Timber Facades

\rightarrow Tall mass timber buildings need prefabricated façade systems for speed \& moisture and fire protection during construction
\rightarrow Systems need to be more thermally efficient to meet more stringent energy codes - typically means more opaque wall than glazed area
\rightarrow Mass timber systems (3 so far) have all demonstrated ability to meet the demanding needs of high-rises in high seismic zones
\rightarrow Cost so far is comparable to cold-form steel framed and a bit less than aluminum (the wood structure is a relatively cheap component of the system)
\rightarrow Mass timber systems can be carbon neutral as wood sequestration can offset other materials (insulation, cladding, finishes, structural connections etc.)

RJH

