Sizing and Startup Procedures for Cooling Systems

by

Armin Rudd Building Science Consortium USDOE Building America Program

for EEBA 2001 Excellence in Building Conference Orlando, Florida Friday, 26 October 2001, 10:05 - 11:30 am

Building Science Corporation

Building America program

Production homebuilder partners:

Pulte, Centex, Del Webb, KB, Artistic, T&C, Sturbridge

October 2001

Building Science Corporation

High performance building envelopes deserve high performance comfort conditioning systems.

Especially for refrigerant based cooling systems, proper sizing and startup procedures are critical.

October 2001

Main Outline

- Cooling system sizing procedures
 - entire system and room-by-room flows
- Duct and transfer air sizing procedures
 - supply and return plenums
 - duct run-outs
 - transfer grilles and jump ducts
- Refrigeration system set and startup procedures
 - line-set install, connecting units, leak testing
 - evacuation, charging, checking charge and airflow

Cooling system sizing procedures: Entire system

Computerized ACCA Manual J approach

- Elite Software RHVAC
- Wrightsoft Right J
- others
- need to handle especially carefully:
 - infiltration
 - ventilation
 - glazing, conversion of SHGC to SC SH
 - SHGC = 0.86 SC

temperature swing multiplier

Intermittent Ventilation Operation

Sizing

 intermittent flow equals constant flow reduced by low background infiltration amount when blower is not on, all divided by duty cycle fraction

$$\dot{Q}_{in} = \frac{(\dot{Q}_{co)} - (\frac{I}{60}V(1-f))}{f}$$

Building Science Corporation

Central-fan-integrated supply ventilation Outside air duct (filtered) connected to return filter grille pan

October 2001

Cooling system sizing procedures: Entire system (cont.)

- Complete house model with front facing north, then rotate front of house to east, south, and west
- Size system to 100% of total load at worst orientation for subdivisions
- Choose equipment so that total cooling capacity matches the total cooling load at the outdoor design temperature
 - nominal ratings are for 95 F outdoor temperature
 - most unused latent capacity converts to sensible

October 2001

Cooling system sizing procedures: Room-by-room air flow

- For any given subdivision model, average the computed cfm's for each room across all four cardinal orientations
 - This gives maximum flexibility to balance flows from the middle rather than the extremes
- Choose supply registers that have multiple adjustable curved blades in front to direct air flow, and flat blades with a single-lever control in back to balance flow

October 2001

Duct sizing

- Using the computerized ACCA Manual J approach, apply the following air velocity constraints to get appropriate duct sizing:
 - supply plenum: max 750 ft/min
 - supply run-outs: max 500 ft/min
 - return grille:
- max 350 ft/min (use 80% free area or actual)
- return duct: •

max 500 ft/min

$$A = \frac{\dot{Q}}{v?f}$$

where: $A = \text{area, ft}^2$
 $\dot{Q} = \text{volumetric flow, ft}^3/\text{min}$
 $v = \text{air speed, ft/min}$
 $f = \text{free area fraction}$

October 2001

Pulte Houston, Creek Bend, Manual J system sizing and duct sizing results

E SE RHVAC prog 28.2 3.7 32.0 103	gram output 25.5 3.7 29.2	SW W 28.3 3.7 32.0		max 32.0	avg 30.8	BSC Spec 3.0 ton
28.2 3.7 32.0	25.5 3.7 29.2	3.7		32.0	30.8	Spec
28.2 3.7 32.0	25.5 3.7 29.2	3.7		32.0	30.8	Spec
3.7 32.0	3.7 29.2	3.7		32.0	30.8	Spec
3.7 32.0	3.7 29.2	3.7		32.0	30.8 _	
32.0	29.2			32.0	30.8 <u></u>	3.0 ton
		32.0		32.0	30.8 __	3.0 ton
103	00					
103	00					
	83	103		103	91	
112	86	112		112	96	
80	89	76		89	84	
123	122	118		128	123	
178	121	178		178	154	
22	39	27		39	32	
13	13	13		13	13	
14	14	14		14	14	
75	63	75		75	68	
61						
21						
57	77			77		
-						
	112 80 123 215 178 22 13 14 75 61 21 49	112868089123122215143178121223913131414756361752121492957775675	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112 86 112 80 89 76 123 122 118 215 143 215 178 121 178 22 39 27 13 13 13 14 14 14 75 63 75 61 75 55 21 21 21 49 29 49 57 77 63 56 75 62 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Main supply trunk (minimum cross section): 18x16

					BSC
Supply Duct Diameter (in)			Spec		
Foyer	1-6	1-7	1-6	1-7	1-7
Dining	1-6	1-7	1-6	1-7	1-7
Kitchen	1-6	1-6	1-6	1-6	1-6
Breakfast	1-7	1-7	1-7	1-7	1-7
Great Room	2-6	2-7	1-8	2-7	2-7
Master Bedrm	1-8	2-6	1-7	2-6	2-6
Master Bath	1-4	1-4	1-4	1-4	1-4
Master Closet	1-4	1-4	1-4	1-4	1-4
Laundry	1-4	1-4	1-4	1-4	1-4
Game Rm	1-5	1-6	1-5	1-6	1-6
Bedrm 2	1-6	1-5	1-6	1-5	1-6
Hall, 2nd	1-4	1-4	1-4	1-4	1-4
Bath 2	1-4	1-5	1-4	1-5	1-5
Bedrm 3	1-6	1-5	1-6	1-5	1-6
Bedrm 4	1-6	1-5	1-6	1-5	1-6
Bedrm 4 Closet	1-4	1-4	1-4	1-4	1-4

PR-0109: Sizing and Startup Procedures for Cooling Systems

Transfer duct/grille sizing

• Calculate free area required to get proper transfer air flow to avoid more than 3 Pa pressurization

$$A = \frac{\dot{Q}}{1.07\sqrt{3}} = \frac{\dot{Q}}{1.853}$$

- where: A = area in square inches $\dot{Q} = \text{air flow rate (ft ³/min)}$
- For jump ducts, don't use less than 6" diameter, most master suites will need 10" to 12" diameter

October 2001

Pulte Houston, Creek Bend, Transfer Area and Jump Duct sizing results

Plan 4244			ntation of Fron	t of House			1		
	Ν	NE E	SE	S	SW V	V NW	' max	avg	
Air Transfer Free Area (in ²)									
Foyer									
Dining									
Kitchen									
Breakfast									
Great Room									
Master Bedrm	87	99		77	10	2	102	91	
Master Bath									
Master Closet									
Laundry									
Game Rm	15	24		18	2		24	21	
Bedrm 2	24	17		24	1	4	24	20	
Hall, 2nd									
Bath 2									
Bedrm 3	26	15		26	1		26	21	
Bedrm 4	24	14		24	1	7	24	20	
Bedrm 4 Closet									
									BSC
Jump Duct Diameter (in)									Spec
Foyer									
Dining									
Kitchen									
Breakfast									
Great Room									
Master Bedrm	10	11		10	1	1	11	11	10
Master Bath									
Master Closet									
Laundry						_		_	_
Game Rm	4	6		5		6	6	5	6
Bedrm 2	6	5		6		4	6	5	6
Hall, 2nd									
Bath 2									
Bedrm 3	6	4		6		5	6	5	6
Bedrm 4	6	4		6		5	6	5	6
Bedrm 4 Closet									

1 The refrigerant grade copper line set should not be left open to the atmosphere to collect contaminants. Cap it off at rough-in and fill with dry nitrogen to 125 psi.

October 2001

- 1 The line set should not be left open to the atmosphere to collect contaminants. Cap it off at rough-in and fill with dry nitrogen to 125 psi.
- 2 Make sure a filter/dryer is installed in the liquid line (bi-
- 3 **disregional ver/prospheres**) copper alloy, with between 5% and 15% silver, braze refrigerant line set to the indoor and outdoor units with nitrogen flowing inside tube
- 4 Check quality of joints visually, then check for leaks by pressurizing the system with between 125 and 150 psi

October 2001

- 5 Connect the manifold gauges, micron gauge, vacuum pump. Release the nitrogen charge and begin evacuation. A 2-stage pump is required.
- 6 Evacuate to 300 microns or less. Isolate the vacuum pump and observe pressure change on the micron gauge. If the micron gauge reading drifts above 700, run the vacuum pump for another 15 minutes and repeat the process.

October 2001

BOILING TEMPERATURES OF WATER AT CONVERTED PRESSURES

Temperature in *F.	Inches of Mercury	Pounds Sq. In. (Pressure)	Microns*
212°	29.92	14.696	759,968
205°	25.00	12.279	635,000
194°	20.69	10.162	525,526
176°	13.98	6.866	355,092
158°	9.20	4.519	233,680
140°	5.88	2.888	149,352
122°	3.64	1.788	92,456
104°	2.17	1.066	55,118
86°	1.25	.614	35,560
80°	1.00	.491 -	25,400
76°	.90	.442	22,860
72°	.80	.393	20,320
69°	.70	.344	17,780
64°	.60	.295	15,240
59°	.50	.246	12,700
53°	.40	.196	10,160
45°	.30	.147	7,620
32°	.18	.088	4,572
21°	.10	.049	2,540
6°	.05	.0245	1,270
—24°	.01	.0049	254
—35°	.005	.00245	127
—60°	.001	.00049	25.4
—70°	.0005	.00024	12.7
90°	.0001	.000049	2.54

۰.

```
1.000 \text{ inch} = 25,400 \text{ microns} = 2.540 \text{ CM} = 25.40 \text{ MM}
                                                                   .100 inch = 2,540 microns = .254 CM = 2.54 MM
.039 \text{ inch} = 1,000 \text{ microns} = .100 \text{ CM} = 1.00 \text{ MM}
```

- 7 With the system in a vacuum, if the line set length is greater than the default length that the manufacturer pre-charged the condenser for, add refrigerant by weight to account for the actual line set according to the manufacturers specification for the tube diameter.
 - A digital refrigerant scale with resolution of at least 1/2 ounce is required
- 8 Release the refrigerant charge from the condenser into the line set and evaporator

October 2001

- 9 If the line set length is less than the default length that the manufacturer pre-charged the condenser for, then remove refrigerant to account for the actual line set length according to the manufacturers specification.
 - A digital refrigerant scale with resolution of at least 1/2 ounce is required
- **10** Start the system and run for at least 15 minutes

October 2001

11 Check for proper sub-cooling for TXV (thermal expansion valve) systems.

The required sub-cooling is specified by the manufacturer and is usually 5 - 15 F. It is not dependent on inside or outside environmental conditions.

Adjust refrigerant charge as necessary.

October 2001

Thermal expansion valve (TXV) refrigerant metering device

- 12 If indoor and outdoor environmental conditions are favorable, check for proper superheat for capillary tube and accurator/piston systems. Superheat is dependent on inside and outside environmental conditions.
 - If the target superheat is > 5 F, adjust refrigerant charge as necessary.

October 2001

_												Ret	irn Air	Wet-	Bulh 3	empe	ratur	e/°B										
															return, i		T SPC MA	~(.,										- 1
1		50	-51	62	-53	54	55	56	67	58	59	60	61	62	63	64	65	66	67	68	69	70	-71	72	73	74	75	76
1	55	8.8	10.1	11.5	12.8	14.2	15.6	17.1	18.5	20.0	21.5	23.1	24.6	26.2	27.8	29.4	31.0	32.4	33.8	35.1	38.4	37.7	39.0	40.2	41.5	42.7	43.9	45.0
1	58	8.6	9.9	11.2	12.6	14.0	15.4	16.8	18.2	19.7	21.2	22.7	24.2	25.7	27.3	28.9	30.5	31.8	33.2	34.6	35.9	37.2	38.5	39.7	41.0	42.2	43.4	44.6
1	57	8.3	9.6	11.0	12.3	13.7	15.1	16.5	17.9	19.4	20.8	22.3	23.8	25.3	26.8	28.3	29.9	31.3	32.6	34.0	35.3	36.7	38.0	39.2	40.5	41.7	43.0	44.2
	58	7.9	9.3	10.6	12.0	13.4	14.8	16.2	17.6	19.0	20.4		23.3	24.8	26.3		29.3		32.1	33.5	34.8	36.1	37.5	38.7	40.0	41.3	42.5	43.7
	59	7.5	8.9	10.2	11.6	13.0	14.4		17.2	18.6	20.0			24.3	25.7		28.7		31.5	32.9	34.3	35.6	36.9	38.3	39.5	40.8	42.1	43.3
1	60	7.0	8.4	9.8	11.2	12.6	14.0	15.4	16.8	18.2	19.6	21.0	22.4	23.8	25.2	26.6	28.1	29.6	31.0	32.4	33.7	35.1	36.4	37.8	39.1	40.4	41.6	42.9
1	61	6.5	7.9	9.3	10.7	12.1	13.5		16.3	17.7	19.1	20.5		23.3	24.7	26.1	27.5		30.4	31.8	33.2	34.6	36.9	37.3	38.6	39.9	41.2	42.4
1	62	6.0	7.4	8.8	10.2	11.7	13.1	14.5	15.9	17.3	18.7	20.1	21.4	22.8	24.2	25.5	27.0		29.9	31.3	32.7	34.1	35.4	36.8	38.1	39.4	40.7	42.0
1	63	5.3	6.8	8.3	9.7	11.1	12.6		15.4	16.8	18.2	19.6			23.6		26.4		29.3	30.7	32.2		34.9	36.3	37.7	39.0		41.6
-	64	-	6.1	7.6	9.1	10.6	12.0		14.9	16.3	17.7			21.7	23.1		25.8		28.7	30.2	31.6	33.0		35.8	37.2	38.5		41.2
Temperature (°F)	65	-	5.4	7.0	8.5	10.0	11.5			15.8	17.1	18.5		21.2	22.5	23.8	25.2		28.2	29.7	31.1	32.5	33.9	35.3	36.7	38.1	39.4	40.8
2	66	-		6.3	7.8	9.3	10.8	12.3	13.8	15.2	16.6	18.0	19.3	20.7	22.0	23.2	24.6		27.6	29.1	30.6	32.0	33.4	34.9	36.3	37.6	39.0	40.4
륲	67 68	-	-	5.5	7.1 6.3	8.7 8.0	10.2 9.5	11.7 11.1	13.2 12.6	14.6	16.0 15.5	17.4 16.8	18.8 18.2	20.1 19.5	21.4 20.8	22.7 22.1	24.1 23.5		27.1 26.5	28.6 28.0	30.1 29.5	31.5 31.0	33.0 32.5	34.4 33.9	35.8 35.3	37.2 36.8	38.6	39.9 39.5
Ē.	69	-	-	-	6.3 5.5	7.2	8.8	10.4	12.0	14.0 13.4	14.8	16.3	17.6	19.0	20.0	21.5	22.9		26.0	27.5	29.0	30.5	32.0	33.4	34.9	36.3	37.7	39.1
1 E	70	-	-	-	0.0	6.4	8.1	9.7	11.2	12.7	14.0	15.7	17.0	18.4	19.7	20.9	22.8		25.4	27.0	28.5	30.0	31.5	33.0	34.4		37.3	38.7
# 1	71	-	-	-		5.6	7.3	8.9	10.5	12.1	13.6	15.0	16.4	17.8	19.1	20.3	21.7	23.3	24.9	26.4	28.0	29.5	31.0	32.5	34.0	35.4	36.9	38.3
옾	72	_		_		3.0	6.4	8.1	9.8	11.4	12.9	14.4	15.8		18.5		21.2		24.8	25.9	20.0	29.0		32.0	33.5	35.0	36.5	37.9
å.	73	_	_	_		-	5.6	7.3	9.0	10.7	12.2	13.7	15.2	16.6	17.9		20.6		23.8	25.4	26.9	28.5	30.0	31.5	33.1	34.6	36.0	37.5
È	74	_	_	_		-	-	6.5	8.2	9.9	11.5	13.1	14.5	15.9	17.3	18.6	20.0		23.2	24.8	26.4	28.0	29.5	31.1	32.6	34.1	35.6	37.1
Air Dry-Bulb	75	-	-	-		-	-	5.6	7.4	9.2	10.8		13.9	15.3	16.7		19.4		22.7	24.3	25.9	27.5	29.1	30.6	32.2	33.7	35.2	36.7
R	76	-	-	-	-	-	-	-	6.6	8.4	10.1	11.7	13.2	14.7	16.1	_	18.9		22.1	23.8	25.4	27.0	28.6	30.1	31.7		34.8	36.3
١ <u>ج</u>	77	-	-	-	-	-	-	-	5.7	7.5	9.3	11.0	12.5		15.4	16.8	18.3		21.6	23.2	24.9			29.7	31.3	32.8	34.4	36.0
1 E	78	-	-	-	-	-	-	-	-	6.7	8.5	10.2	11.8	13.4	14.8	16.2	17.7	19.4	21.1	22.7	24.4	26.0	27.6	29.2	30.8	32.4	34.0	35.6
2	79	-	-	-	-	-	-	-	-	6.9	7.7	9.5	11.1	12.7	14.2	15.6	17.1	18.8	20.5	22.2	23.8	25.5	27.1	28.8	30.4	32.0	33.6	35.2
Condenser	80	-	-	-	-		-	-	-	-	6.9	8.7	10.4	12.0	13.5	15.0	16.6	18.3	20.0	21.7	23.3	25.0	26.7	28.3	29.9	31.6	33.2	34.8
1 ×	81	1	-	-	-	-	-	-	-	-	6.0	7.9	9.7	11.3	12.9	14.3	16.0	17.7	19.4	21.1	22.8	24.5	26.2	27.9	29.5	31.2	32.8	34.4
1	82	-	-	-	-	-	-	-	-	-	5.2	7.1	8.9	10.6	12.2	13.7	15.4	17.2	18.9	20.6	22.3	24.0	25.7	27.4	29.1	30.7	32.4	34.0
1	83	-	-	-	-	-	-	-	-	-	-	6.3	8.2	9.9	11.6		14.9	16.6	18.4	20.1	21.8	23.5	25.2	26.9	28.6	30.3		33.7
1	84	-	-	-	-	-	-	-	-	-	-	5.5	7.4	9.2	10.9		14.3		17.8	19.6	21.3	23.0	24.8	26.5	28.2		31.6	33.3
1	85	-	-	-	-	-	-	-	-	-	-	-	6.6	8.5	10.3		13.7		17.3	19.0	20.8	22.6	24.3	26.0	27.8		31.2	32.9
1	-86	-	-	-	-	-	-	-	-	-	-	-	5.8	7.8	9.6	11.3	13.2		16.7	18.5	20.3	22.1	23.8	25.6	27.3	29.1	30.8	32.6
	87	-	-	-	-	-	-	-	-	-	-	-	Б.0	7.0	8.9	10.6	12.6		16.2	18.0	19.8	21.6	23.4	25.1	26.9	28.7	30.4	32.2
	88	-	-	-	-	-	-	-	-	-	-	-	-	6.3	8.2	10.0	12.0		15.7	17.5	19.3	21.1	22.9	24.7	26.5	28.3	30.1	31.8
	89	-	-	-	-	-	-	-	-	-	-	-	-	5.5	7.5	9.4	11.5		15.1	17.0	18.8	20.6		24.3	26.1	27.9		31.5
	90	-	-	-	-	-	-	-	-	-	-	-	-	-	6.8	8.8	10.9	12.8	14.6	16.5	18.3	20.1	22.0	23.8	25.6	27.5	29.3	31.1

Table 1: Target Superheat (Suction Line Temperature - Evaporator Saturation Temperature)

13 Check for proper temperature drop across the evaporator coil (varies with return air dry bulb and wet bulb temperature, usually 15 - 25 F).

Check static pressures in the supply and return plenums (max 125 Pa differential across blower).

Correct for any airflow problems/restrictions as necessary.

October 2001

According to the best engineering data available, the performance loss using a TXV metering device is about 5% if the refrigerant charge is off by plus or minus 20%.

The performance loss using a fixed metering device (capillary tube or accurator) is about 15% to 20% if the refrigerant charge is off by plus or minus 20%.

Therefore, TXV systems are best, however, by following the installation procedure listed above, the refrigerant charge should be within about 5% every time, limiting the performance loss to about 5%.

October 2001

Building Science Consortium

energy

Additional Resources

- "Just the facts," Thermal Engineering Company, Toledo, OH
- "Fundamentals of dehydrating a refrigerant system," Robinair Manufacturing Corp., Montpelier, OH
- "Influence of the expansion device on air-conditioner system performance characteristics under a range of charging conditions," Farzad and O'Neal, ASHRAE Transactions 1993, V. 99, Pt. 1.
- "Residential cooling load calculation methods analysis," Proctor Engineering Group.
- "Soldering and brazing copper tube," Copper Development Association Inc.
- "Three refrigerant states," Wheeler, Contracting Business, Dec 1989.
- "Split system space cooling refrigerant charge and air flow measurement," California Energy Commission, Contractor's Report, #P 400-01-014, http://www.energy.ca.gov/reports.

October 2001

