

Phased Retrofit of Watergate's "Sister"

A catalyst for a new framework based on building resiliency and decarbonization life cycle cost

- 1. Introduction
 - a. Identification of problem
 - b. Thought Process
- 2. Proposed Solution
 - a. Phasing
 - b. Details of steps
- 3. How Much Retrofit Do you Need?
 - a. Thermal Resilience
- 4. REVIVE
 - a. Where is this all headed?
- 5. Conclusion

Affiliated Organizations

- **1. DOE**
- 2. RMI
- a. Realize
- 3. ABC (Advanced Building Construction)
- 4. Phius
- a. Brings in passive buildings, building sciences, climate specifics
 5. Baumann Consulting a. Energy auditor for "Brutus"

1. "Not a crook"

1. "Not a crook"

O Identifying the Problem

"Not a crook"
 Got busted for this

O Identifying the Problem

"Not a crook"
 Got busted for this
 At this famous hotel

O Identifying the Problem

- 1. "Not a crook"
- 2. Got busted for this
- 3. At this famous hotel
- 4. Architect really liked concrete and glass

O Building Overview

"Brutus"

- Washington, DC
- Built 1972
- Fischer and Elmore
 Architects
- 129 condos
- 242,000 sf
- 10 stories with 3 basements

3/3 362-3300 STERING

What's Going Wrong?

- Washington, DC BEPS (Building Energy Performance Standards)
- \$2,630,000 fine
 - if no
- 56% reduction in site energy

There is an alternative path for phased compliance

Original, failing low pressure steam boilers

What's Going Wrong?

Drafty, single pane windows

On 31°F day, glass was 37°F

What's Going Wrong?

Concrete balconies have structural damage and are a fin-tube radiator to the outdoors

Energy Cost	Electricity	Natural Gas	Net Measure	Simple		
Savings	Savings	Savings	Cost	Payback		
\$ 347,000	1,491,800 kWh	271,400 Therm	\$ 20,914,800	None		

- Can be staggered or take Phase at a time
 Following current sequence would be a 6 year plan
 Trying to spread out large capital costs
 Respond to the existing deficiencies
- - Boilers
 - Windows
 - Roof
 - Balconies
- Response to BEPS Requirements

 Reduce site energy with mechanical upgrade, 20%
 Avoids the \$2,600,300 fine
 Long term plan to decrease site energy consumption by 77%

 Build in benefits for owners
- - Maintain balconies

 - Passive SurvivabilityDecreased utility costs

- Highlights
 - Fixes mechanical issues first
 - Spread out cost
 - Instant cost savings on boilers, and reduces energy to tackle BEPS Phase 1

Phase	Measure		Cost	P	hase Cost	Uti	lity Cost	Cost savings		
	BASELINE:					\$	569,661			
	Air source heat pumps (hydronic)	\$	2,508,000							
1	Package boilers to cover additional load	\$	847,650	\$	3,600,650	\$	544,826	\$	24,835	
	Heat pump water heater (DHW)	\$	245,000]						
	Insulate first floor	\$	75,200							
	Demand ventilation in garage	\$	25,200]						
2	Temperature/ demand control of DHW recirculation	\$	2,000	\$	144,600	\$	505,986	\$	38,839	
	Surface parking LED	\$	25,800							
	Interior Lighting LED	\$	7,500							
	Occ Sensors in garage	\$	8,900							
3	Upgrade windows (based on resiliency/ comfort)	54	10,394,550	\$	10,394,550	\$	440,004	\$	65,983	
4	Roof Repair and Upgrade	ы	2,366,400	¢	+ 4 505 550		101 010	÷	10 104	
4	Exterior wall EIFS	ы	2,169,150	Ĵ	4,555,550	Þ	421,010	4	10,194	
	Decentralized ERV	\$	332,500		551 400	÷	224.001	¢	07.710	
5	Upgrade common area AHUs	\$	218,922	1 ≫ 551,4.	551,422	⇒	324,091	Þ	97,719	
6	PV	\$	220,500	÷	420 500	¢	247 672	¢	76.410	
6	Battery Backup	\$	200,000	2	420,500	2	247,072	Þ	70,419	

Phasing Details

Phase 1: Tackling the Major Deficiency

1. High Efficiency Air Source Heat Pump Chillers

 Packaged Boilers
 CO₂ Heat Pump Water Heaters

- 1. High Efficiency Air Source Heat Pump Chillers
 - a. Coverage 20% of heating load
- 2. Packaged Boilers
 - a. Coverage 78% of heating load
 - b. Stop gap equipment (to be decommissioned)

Base Case Wind

Heating Load Reduction

Windows & Partial Airsealing

Deep Retrofit

- Two low pressure steam boilers
 - 10,000 MBH ea
 - 15 PSIG
 - ~52% efficiency
- Two centrifugal chillers
 - 300 tons ea

- HX1: Primary
- HX2: Secondary
- HX3: DHW
- HX4: Humidification

																	NOT	
P	ana ana ana ang ang ang ang ang ang ang									1.4.4	7	7	- HEAT	LEXCHANGER			e	52
	Н	E /	A	T		E	×	СН	Å	N	G	E	R	· .		SCH	EDUL	E
	ITEM	j A		LOAD MBH	SHE STEAM PRESS	L.L SI STEAM LBS/	DE FLOW HOUR	TUE WATER GPM	3E 5	LWT	MAX.	CON SHELL DIA.	TUBE	TION PAT	FA HTG SURF SQ FT	LOCATION	REMARK	.5
HEAT	EXCHANC	SER	Nº I	1500	9 13510	1500	2 1/HR.	150	180"	200	3FT.					BOILBR ROOM	1 PRIMARY HOT WA	ATER
HEAT	EXCHANC	ier	Nº 2	11,300	5 151G	12,00	DO HAR	900	1600	185	3 PT.					BOILER ROOM	SECONDARY HOT	WAT
EAT	EXCHANC	SER	Nº 3	2300	5 PS16	2400	O ≯/HR.	SEE	PLUMB	NG	DETA	L SHE	ET DWG N	1-51		BOILER ROOM	DOMESTIC HOT V	NATE
1	EXCHAN	GER	Nº4	450	5 PSIG	470	≠/HR.	18	40°	90°	315					BOILER ROOM	HUMIDIFICATION W	ATER

27 VBLO GITT FPS TUBE

					1						1			2	<u> </u>	Ø.	i,				L	$\overline{\nabla}$				· .		1.1	
	A	1 833	R	- /					÷.,	H	Ă,	Z		D	Ľ	-		Z	ć	3	·				U	7	1	T	
			FAN	1,12	DÀ	ΤÅ	-	. 1	PRE	HEAT	601	L P	ATA		6	6.0	0 1	120	1	Ċ	0	L	Ρ	ΑT,	Ą	REH	AT	COIL P	ATA
	UNIT Nº	CEM	EXT.	MAX.	MAX	NOTOR	MIN	A	IR	. 45.701	M.	, W	ATER	2.		Å	R	•	W	ATEN	2_	SPRAY	MAX.	MIN.	MAX.	AI	R	- " 57 E	AM .
. L			5.P.	FPM	RPM	HP	O.A.	EDB	LOB	PRESS.	RATE	EWT	GPM	P.D.	50B	EWB	LDB	LWB	EWT	GPM	P.D.	H,P.	PPM	ROWS	9.P.	EDB	LDB	PRESS.	RATE
7	A. H. U # 1	22,110	1.50"	1600	620	20	22,110	0.	60°	59519	1500/10	_	-		95°	780	55°	540	44.	375	历町	12HP	450	6	1.01	60 °	85'	5 PS1G.	630% He
1 1	A H. U. + 2	22,270	1.50°	1600	620	20	22,270	100	60'	5 2519	1500/4				950	78.	55'	54.	44°	\$75	15 11	249	450	6	1.0%	600	86	51516	630 /HE
1	A.H. J. 3	6500	1.0 "	1500	995	7/2	5500	0.	600	59519	375 /44	-	-		950	78°	56°	54°	440	10	15 1	- 1.	520	6	1.10	600	95.	5 9916	220 /up
- 1	AHUB 4	10700	1.0	1500	1060	10	5350	38°	85	59414	570 ×1				87.5	72.5°	57°	54"	44°	130	ISFT		400	8	1.00"	750	1000	59914	310942
- 1		1.1								-			-	ana han sa santa													marine for anno	an characteristic and the	
1	-	1				1			1	-					İ]	<u> </u>	I							-		

- NOTES 1- ALL UNITS SHALL HAVE VARIABLE GREEP PRIVE 2- ULITS SHALL BE MOUNTED ON SPRING VARIATIONS ISOLATORS W/ SOUND PADS. 3- FANS SHALL HAVE AIRFOIL BLADES 4- MAX. S.R LOSS FOR COOLING COILS INCLUDES SPRATS & ELIMINATORS.
- 3- FANG GAALL HAVE AIRFOIL BLADES
- 5. STEAM COILS TO BE MIN. 2 RONG. NON FREEZE TYPE.
 - 60,580 cfm total, 100% OA.
 - Tempered to 70°F
 - 55,000 cfm direct exhaust

Phase 2: Low Cost Efficiency Measures

 Insulate garage ceiling
 Demand

2. Demand control ventilation in garage

garage 3. Upgraded DHW controls (

- 4. Surface
- 5. Interior LED lighting
- 6. Occupancy sensor in
 - garage

			F	inan	cial			BEPS 2			
#	Measure Description	м	easure Cost	Annual Cost Savings		Simple Payback (yrs) ¹⁰	% of recommended Target ¹¹	Avoided BEPS Penalty ¹²		Simple Payback after avoided Penalty (yr)	% of Target Source EUI Reduction Cycle 2
Low-C	ost and No-Cost Recommendations										
5.1.1	Evaluate Garage Ventilation System and Install Garage CO/NO2 Controlled Ventilation	\$	25,200	\$	8,000	3.1	3%	\$	93,800	Immediate	2%
5.1.2	Install Temperature Control on DHW- Recirculation Pump	\$	2,000	\$	600	3.3	1%	\$	10,200	Immediate	<1%
5.1.3	Install Low-Flow Fixtures	\$	148,600	\$	3,000	None	4%	\$	53,400	32.0	3%
5.1.4	Calibrate Thermostats in Residential Units	\$	7,800	\$	300	25.8	<1%	\$	4,700	10.2	<1%
5.1.5	Upgrade Surface Parking Lighting to LED	\$	25,800	\$	5,900	4.4	2%	\$	69,100	Immediate	1%
5.1.6	Upgrade Lighting to LED	\$	7,500	\$	2,800	2.7	<1%	\$	28,300	Immediate	<1%
5.1.7	Retro Commission the Chiller Plant	\$	10,000	\$	23,100	0.4	7%	\$	268,900	Immediate	5%
5.1.8	Install Occupancy Sensors in Covered Parking Areas	\$	8,900	\$	6,000	1.5	2%	\$	68,700	Immediate	1%

4.75 year ROI

Phase 3: Replacing the Windows

- Replace all exterior windows
- U-0.25 (Good Double Pane)
- Window overlaps other phases

Phase 4: Finishing the Envelope Upgrades

- 1. Replace and upgrade roof
- 2. Insulate exterior walls
- 3. Mitigate balcony thermal bridging

psi: 0.401 Btu/hr ft °F

psi: 0.125 Btu/hr ft °F

Phase 5: Improved Ventilation

- 1. Energy recovery ventilation (unit or floor level)
- 2. Replace and upgrade common area air handlers

Fresh Air Supply to Building

Phase 6: Renewables and Battery Backup

 Photovoltaic panels on roof
 Battery backup

How Much Retrofit Do You Need?

Let's look at resiliency

Phius 20 Performance Criteria C	Heating demand:			
UNITS:	IMP	ERIAL (IP)	~	Cooling demand:
BUILDING FUNCTION:	RES	IDENTIAL	~	Heating load:
PROJECT TYPE:		ONSTRUCTIO	N ~	Quality last
STATE/ PROVINCE	\ \	/IRGINIA	~	Source energy:
СІТҮ	WASHIN	GTON DC REA	.G ►	Site energy:
Envelope Area (ft²)		210,296.1		
iCFA (ft²)		242,122.0		
Dwelling Units (Count)		129		Ph
Total Bedrooms (Count)		158		-
Space Conditioning	Criteria			CO
Annual Heating Demand Annual Cooling Demand Peak Heating Load Peak Cooling Load	4.0 9.7 4.0 3.1	kBtu/ft²y kBtu/ft²y Btu/ft²hr Btu/ft²hr	r r	
Source Energy Cr	riteria			
Phius CORE Phius ZERO	5800 0	kWh/persor kWh/persor	n.yr n.yr	

 Phius CORE
 5800
 kWh/person.yr

 Phius ZERO
 0
 kWh/person.yr
Winter Outage Resilience

- Passive building measures help keep heat in:
 - Airtight enclosure
 - Superinsulation
- They also keep CO2 in:
 - Need ERV/HRV 5 cfm/person (2.4 l/s)
 - Cracked Window (no heat recovery)

Winter Outage Resilience

Metrics/criteria:

- Hours below 2°C (35.6° F) = 0.
- Heating SET Hours, basis 12.2°C (54°F) \leq 216 F-hours.
 - ASHRAE 55-2010 defines SET as "the temperature of an imaginary environment at 50% relative humidity, <0.1 m/s [0.33 ft/s] average air speed, and mean radiant temperature equal to average air temperature, in which total heat loss from the skin of an imaginary occupant with an activity level of 1.0 met and a clothing level of 0.6 clo is the same as that from a person in the actual environment, with actual clothing and activity level"

Summer Outage Resilience

- Though passive measures alone may not suffice, **they remain crucial**.
- We want to find combinations of passive measures that can lower the load to the point where rooftop PV + mechanical cooling can keep a place livable.
 - Passive enclosure can keep the active cooling in

Summer Outage Resilience

Metrics/criteria

 Heat index, hours in Danger = 0

• Battery capacity

• Demand limit setback to 90°F HI

					NOAA	nationa	i weath	er servi	ce: nea	Index						
Tempera- ture Relative humidity	80 °F (27 °C)	82 °F (28 °C)	84 °F (29 °C)	86 °F (30 °C)	88 °F (31 °C)	90 °F (32 °C)	92 °F (33 °C)	94 °F (34 °C)	96 °F (36 °C)	98 °F (37 °C)	100 °F (38 °C)	102 °F (39 °C)	104 °F (40 °C)	106 °F (41 °C)	108 °F (42 °C)	110 °F (43 °C
40%	80 °F (27 °C)	81 °F (27 °C)	83 °F (28 °C)	85 °F (29 °C)	88 °F (31 °C)	91 °F (33 °C)	94 °F (34 °C)	97 °F (36 °C)	101 °F (38 °C)	105 °F (41 °C)	109 °F (43 °C)	114 °F (46 °C)	119 °F (48 °C)	124 °F (51 °C)	130 °F (54 °C)	136 °I (58 °C
45%	80 °F (27 °C)	82 °F (28 °C)	84 °F (29 °C)	87 °F (31 °C)	89 °F (32 °C)	93 °F (34 °C)	96 °F (36 °C)	100 °F (38 °C)	104 °F (40 °C)	109 °F (43 °C)	114 °F (46 °C)	119 °F (48 °C)	124 °F (51 °C)	130 °F (54 °C)	137 °F (58 °C)	
50%	81 °F (27 °C)	83 °F (28 °C)	85 °F (29 °C)	88 °F (31 °C)	91 °F (33 °C)	95 °F (35 °C)	99 °F (37 °C)	103 °F (39 °C)	108 °F (42 °C)	113 °F (45 °C)	118 °F (48 °C)	124 °F (51 °C)	131 °F (55 °C)	137 °F (58 °C)		
55%	81 °F (27 °C)	84 °F (29 °C)	86 °F (30 °C)	89 °F (32 °C)	93 °F (34 °C)	97 °F (36 °C)	101 °F (38 °C)	106 °F (41 °C)	112 °F (44 °C)	117 °F (47 °C)	124 °F (51 °C)	130 °F (54 °C)	137 °F (58 °C)			
60%	82 °F (28 °C)	84 °F (29 °C)	88 °F (31 °C)	91 °F (33 °C)	95 °F (35 °C)	100 °F (38 °C)	105 °F (41 °C)	110 °F (43 °C)	116 °F (47 °C)	123 °F (51 °C)	129 °F (54 °C)	137 °F (58 °C)				
65%	82 °F (28 °C)	85 °F (29 °C)	89 °F (32 °C)	93 °F (34 °C)	98 °F (37 °C)	103 °F (39 °C)	108 °F (42 °C)	114 °F (46 °C)	121 °F (49 °C)	128 °F (53 °C)	136 °F (58 °C)					
70%	83 °F (28 °C)	86 °F (30 °C)	90 °F (32 °C)	95 °F (35 °C)	100 °F (38 °C)	105 °F (41 °C)	112 °F (44 °C)	119 °F (48 °C)	126 °F (52 °C)	134 °F (57 °C)			1			
75%	84 °F (29 °C)	88 °F (31 °C)	92 °F (33 °C)	97 °F (36 °C)	103 °F (39 °C)	109 °F (43 °C)	116 °F (47 °C)	124 °F (51 °C)	132 °F (56 °C)							
80%	84 °F (29 °C)	89 °F (32 °C)	94 °F (34 °C)	100 °F (38 °C)	106 °F (41 °C)	113 °F (45 °C)	121 °F (49 °C)	129 °F (54 °C)		1						
85%	85 °F (29 °C)	90 °F (32 °C)	96 °F (36 °C)	102 °F (39 °C)	110 °F (43 °C)	117 °F (47 °C)	126 °F (52 °C)	135 °F (57 °C)								
90%	86 °F (30 °C)	91 °F (33 °C)	98 °F (37 °C)	105 °F (41 °C)	113 °F (45 °C)	122 °F (50 °C)	131 °F (55 °C)									
95%	86 °F (30 °C)	93 °F (34 °C)	100 °F (38 °C)	108 °F (42 °C)	117 °F (47 °C)	127 °F (53 °C)										
100%	87 °F (31 °C)	95 °F (35 °C)	103 °F (39 °C)	112 °F (44 °C)	121 °F (49 °C)	132 °F (56 °C)										

- End unit
- Lots of
- glazing3 Beds, 2,700 SF
 - Not Dense

BSC 2_Heating Outage Resilience

Date

BSC 2_Cooling Outage Resilience

BSC 2_Cooling Outage Resilience

Heating SET Hours Hours Below 2°C

Winter Outage Single Point Metrics

Cooling Outage Single Point Metrics

Hours

Where is This All Headed?

O Phius REVIVE *Pilot* Framework

Retrofit-Gate

REVIVE = Phius' existing retrofit program **REVIVE** *Pilot* = Retrofit program in development

New Framework:

- 1. Use outage **resilience** as the guiding principle for enclosure upgrades (rather than cost optimization, how the existing program is framed)
- 2. Phase in a retrofit plan over time (optional)
 - Electrify first, to final capacity
 - Make envelope improvements
 - Decommission stop gap assets
- 3. Do this at the best life-cycle cost, including cost of carbon, operating and embodied. (ADORB cost)

Summary: REVIVE Pilot program

Key requirements

- A quality assurance process covers all phases.
- Direct emissions cease soon.
- Critical loads are covered by locally-generated renewable generation / storage

Scope

- Land use
- Decarbonization
- Cost/Finance/Equity
- Resilience
- Quality and Health
- Phase planning
- · GOOD FOR YOUR BUILDING
 - GOOD FOR THE PLANET
- QUALITY ASSURED RESULTS

ADORB Cost [] Includes Embodied Carbon

Annualized Decarbonization Of Retrofitted Building Cost

ADORB Cost = sum of the following components, each an annual cost:

- Direct energy cost. E.g. site kWh * \$/kWh = \$
- Direct building retrofit measures cost (material & labor) including building-level electrification cost. E.g. ft3 of stuff * \$/ft3 = \$
- Cost of carbon, upfront / embodied. CO2e kg * \$/kg = \$
- Cost of carbon, operating. CO2e kg * \$/kg = \$
- Energy system transition cost (e.g. new solar + storage). \$/MW * MW = \$

ADORB Cost should not exceed baseline and preferably is minimized.

Cost of Carbon = \$0.25 [\$/kg]

INCLUDES LABOR, NOT JUST MATERIALS -- PERSONAL & BUSINESS CHOICES COUNT

Q Test building

US DOE Prototypical Single Family House

- 2 Stories
- 3 beds (4 occ)
- 2,128 sqft (198 sqm)
- 13.5% WWR
- slab on grade

Packages and summer modes

Retrofit Packages:

- 0 Baseline, typical existing condition
- 1 Equipment & appliances, electrification
- 1 but better ERV
- 2 add DOE "Market ready envelope"
- 2 but better ERV
- 3 IECC 2021
- 4 Phius 2021 excl. subslab insul.
- 4 Phius 2021 incl. subslab insul.

Summer modes

- NV natural vent., temp control
- SNV scheduled nat. vent., temp ctrl.
- SNV+Shd add exterior blinds
- HP heat pump
- HP+Shd heat pump + ext. blinds
- EC evaporative cooler (B zones)
- EC+Shd evap cooler + ext. blinds

Current Results

Chicago full results, additional at end of presentation

Tool Development

4 Step Resilience	Test v1.1 -	×
	т	
Start Project Settings	Basic Input Data	
Study Folder:	C:/4StepResiliencev1-1	Browse
Geometry IDF:	C:/4StepResiliencev1-1/PNNL_SF_Geometry.idf	Browse
Template IDF:	C:/4StepResiliencev1-1/00_SF Base v1_noGeo.idf	Browse
DDY:	C:/4StepResiliencev1-1/CAN Weather Data/CAN_ON_Toronto.716240_CWEC.ddy	Browse
Import Template		
IDD File Location:	C:\EnergyPlusV9-5-0\Energy+.idd	Browse
COLLECT Progress:		
IMPORT CREATE	COLLECT EXIT	
		10

CHICAGO_NV_Heating Outage Resilience

CHICAGO_NV_Cooling Outage Resilience

CHICAGO_SNV_Cooling Outage Resilience

CHICAGO_SNV+Shd_Cooling Outage Resilience

CHICAGO_HP_Cooling Outage Resilience

CHICAGO_HP+Shd_Cooling Outage Resilience

Date

Heating Set Hours (12.2°C)	Package_0 Base House	Package_1 Base House + Mech	Package_1 Base House + ERV 0.8	Package_2 Market Ready	Package_2 Market Ready + ERV 0.8	Package_3 IECC 2021	Package_4 Phius Retrofit	Package_4 Phius Retrofit + Subslab
MIAMI, FL	0	0	0	0	0	0	0	0
EL PASO, TX	0	0	0	0	0	0	0	0
SEATTLE, WA	0	0	0	0	0	0	0	0
DENVER, CO	7	8	8	0	0	0	0	0
CHICAGO, IL	817	831	824	315	307	24	0	0
INTL FALLS, MN	1313	1326	1320	646	637	138	0	0

Freezing hours (T<2°C)	Package_0 Base House	Package_1 Base House + Mech	Package_1 Base House + ERV 0.8	Package_2 Market Ready	Package_2 Market Ready + ERV 0.8	Package_3 IECC 2021	Package_4 Phius Retrofit	Package_4 Phius Retrofit + Subslab
MIAMI, FL	0	0	0	0	0	0	0	0
EL PASO, TX	0	0	0	0	0	0	0	0
SEATTLE, WA	0	0	0	0	0	0	0	0
DENVER, CO	0	0	0	0	0	0	0	0
CHICAGO, IL	92	96	94	14	13	0	0	0
INTL FALLS,								
MN	151	151	151	71	67	0	0	0

Natural Ventilation - Extreme Caution	Package_0 Base House	Package_1 Base House + Mech	Package_1 Base House + ERV 0.8	Package_2 Market Ready	Package_2 Market Ready + ERV 0.8	Package_3 IECC 2021	Package_4 Phius Retrofit	Package_4 Phius Retrofit + Subslab
MIAMI, FL	119	97	97	98	99	99	104	115
EL PASO, TX	36	8	8	6	6	12	6	12
SEATTLE, WA	0	0	0	0	0	0	0	0
DENVER, CO	0	3	3	2	2	2	1	2
CHICAGO, IL	89	31	31	33	33	33	34	37
INTL FALLS.								
MN	18	0	0	0	0	0	0	0

Natural Ventilation -Caution	Package_0 Base House	Package_1 Base House + Mech	Package_1 Base House + ERV 0.8	Package_2 Market Ready	Package_2 Market Ready + ERV 0.8	Package_3 IECC 2021	Package_4 Phius Retrofit	Package_4 Phius Retrofit + Subslab
MIAMI, FL	13	57	57	61	61	68	95	104
EL PASO, TX	115	89	89	91	92	88	92	88
SEATTLE, WA	28	13	13	13	13	13	13	15
DENVER, CO	101	53	53	54	54	54	54	54
CHICAGO, IL	70	80	80	80	80	80	80	77
INTL FALLS,								
MN	78	44	44	44	44	44	42	42

Scheduled Natural Ventilation - Extreme Caution	Package_0 Base House	Package_1 Base House + Mech	Package_1 Base House + ERV 0.8	Package_2 Market Ready	Package_2 Market Ready + ERV 0.8	Package_3 IECC 2021	Package_4 Phius Retrofit	Package_4 Phius Retrofit + Subslab
MIAMI, FL	119	87.5	87.5	87.83	88	72.5	76	79.83
EL PASO, TX	36.17	1.33	1.33	0	0	24.83	10.33	26.17
SEATTLE, WA	0	0	0	0	0	0	0	0
DENVER, CO	0	3	3	2.33	2.33	2.33	1.33	2
CHICAGO, IL	89.17	40.17	40.17	40.83	41	48.83	48.33	51.17
INTL FALLS, MN	18.17	0	0	0	0	2	2	0.83

Scheduled Natural Ventilation -Caution	Package_0 Base House	Package_1 Base House + Mech	Package_1 Base House + ERV 0.8	Package_2 Market Ready	Package_2 Market Ready + ERV 0.8	Package_3 IECC 2021	Package_4 Phius Retrofit	Package_4 Phius Retrofit + Subslab
····· -·								
MIAMI, FL	13.33	63.17	63.17	68.17	68.67	75.17	103.83	106.5
EL PASO, TX	114.5	97	97.17	98.67	98.67	76.83	90	75.67
SEATTLE, WA	28	7.5	7.33	4.67	4.67	5	4.83	8.33
DENVER, CO	100.67	53	53	53.67	53.67	53.83	53.83	54.33
CHICAGO, IL	69.83	76	76	75.67	75.5	67.67	69.67	60.83
INTL FALLS.								
MN	78	34.83	34.83	33.83	33.83	32.5	32.67	31.83

ADORB Cost Example: Electrification of Apartment in Portland, OR

Lifecycle Cost

Baseline case

©2021 Phius

Proposed case

Questions?

Graham Wright, PhD Senior Scientist, Phius gwright@phius.org

Al Mitchell, EIT, CPHC Technical Staff, Phius amitchell@phius.org

Appendix

Full graph results for:

- Miami, FL
- El Paso, TX
- Seattle, WA
- Denver, CO
- International Falls, MN

Miami, FL

MIAMI_NV_Heating Outage Resilience

MIAMI_NV_Cooling Outage Resilience

MIAMI_SNV_Cooling Outage Resilience

MIAMI_SNV+Shd_Cooling Outage Resilience

MIAMI_HP_Cooling Outage Resilience

MIAMI_HP+Shd_Cooling Outage Resilience

El Paso, TX

EL-PASO_NV_Heating Outage Resilience

EL-PASO_NV_Cooling Outage Resilience

EL-PASO_SNV_Cooling Outage Resilience

EL-PASO_SNV+Shd_Cooling Outage Resilience

EL-PASO_HP_Cooling Outage Resilience

EL-PASO_HP+Shd_Cooling Outage Resilience

EL-PASO_EC_Cooling Outage Resilience

EL-PASO_EC+Shd_Cooling Outage Resilience

Seattle, WA

SEATTLE_NV_Cooling Outage Resilience

SEATTLE_SNV_Cooling Outage Resilience

SEATTLE_SNV+Shd_Cooling Outage Resilience

SEATTLE_HP_Cooling Outage Resilience

SEATTLE_HP+Shd_Cooling Outage Resilience

Denver, CO

DENVER_NV_Cooling Outage Resilience

DENVER_SNV_Cooling Outage Resilience

DENVER_SNV+Shd_Cooling Outage Resilience

DENVER_HP_Cooling Outage Resilience

DENVER_HP+Shd_Cooling Outage Resilience

DENVER_EC_Cooling Outage Resilience

DENVER_EC+Shd_Cooling Outage Resilience

International Falls, MN

IFAP_NV_Heating Outage Resilience

IFAP_NV_Cooling Outage Resilience

IFAP_SNV_Cooling Outage Resilience

IFAP_SNV+Shd_Cooling Outage Resilience

2020-07-23

2020-07-24

2020-07-25

2020-07-26

2020-07-22

— Package_2_Market Ready + ERV 0.8_Zone RH

2020-07-21

----- Package_3_IECC 2021_Zone RH

2020-07-20

Package_4_Phius Retrofit_Zone RH

---- Package_1_Base House + Mech_Zone RH

2020-07-19

— Package_1_Base House + ERV 0.8_Zone RH

IFAP_HP_Cooling Outage Resilience

IFAP_HP+Shd_Cooling Outage Resilience

