The Putney School New Dorms

Lowering Total Carbon Emissions

Strategies for Design and Construction

Maclay Architects

Putney School Dorms:Structure of Presentation

- 1. Carbon Analysis Framing
- 2. Project Case Study: Putney School Dormitories
- 3. Analyzing Embodied and Operational Emissions Over Time
- 4. Carbon Storage and Time Value of Carbon
- 5. RESNET 1550 and Next Steps in Total Carbon Reduction

Embodied CO₂e Life Cycle Stage Calculations

Basic embodied carbon math

Material quantity

From plan take-offs

Estimating material carbon emissions

Emission data sources

An Environmental Product
Declaration (EPD) "quantifies
environmental information on
the life cycle of a product to
enable comparisons between
products fulfilling the same
function."

The EPD methodology follows ISO series 14040 & 14025 requirements.

Reports in kg CO2e.

BEAM Material CO₂ Emissions Estimator (A1-A3)

- Direct side-by-side material comparisons
- Assembly comparisons
- Design development
- Whole building models and comparisons
- Includes carbon storing materials

Cumulative Operational CO₂e Emissions – *Business as usual*

Cumulative Operational CO₂e Emissions – *High Efficiency*

Source: Builders for Climate Action

High Embodied + Low Operational CO₂e Emissions

We need to reduce both!

Graphic: Builders for Climate Action

The Putney School New Dorms: Structure of Presentation

- 1. The building and context
- 2. Operational Energy and CO2e Modeling (2 options)
- 3. Embodied CO2e in Materials (3 options)
- 4. Total Carbon Picture Over Time (2 options)
- 5. Lessons Learned

The Putney School New Dorms: Two Buildings, Nearly Identical

Gund House

Hepper House

Second Floor Plan

The Putney School New Dorms: Embodied Carbon – Material Considerations

Original interior rendering:

Double-height common space for students

Wood accents anticipating student involvement

The Putney School New Dorms: Embodied Carbon & Insulation

18" of Blown Cellulose R-60

12" of Wet Spray Cellulose R-40

4" of EPS + Polyiso R-16

12" of Glavel R-20

The Putney School New Dorms: Cement Replacement in Concrete

	% Cement
	Replacement
	Specification
Footings	25% - 70%
Walls, columns, piers	25% - 50%
Interior slab	0 - 25%
Exterior slab	15 - 25%

The Putney School New Dorms: Cement Replacement in Concrete

	% Cement Replacement	
	Specification	Achieved
Footings	25% - 70%	25%
Walls, columns, piers	25% - 50%	25%
Interior slab	0 - 25%	0%
Exterior slab	15 - 25%	15%

The Putney School New Dorms: Embodied Carbon & Concrete

The Putney School New Dorms:
Lowering Operational Emissions at building envelope

Final blower door test of 0.035 CFM50 /SF of Envelope (6 sides)

The Putney School New Dorms: Continuous Air Barrier

Three options analyzed:

- 1. Code building baseline, 2020 CBES
- 2. Baseline net zero ready building Net zero ready performance built as if embodied CO2e was NOT considered
- 3. Lower embodied carbon net zero ready Building as built

Building	Code building baseline, RBES	Baseline Net Zero Ready	Lower Embodied Casrbon Net
Enclosure		Building	Zero Ready
Windows	R-3.3 low-e, argon	R-5 tripane, dual low-e, argon	R-5 tripane, dual low-e, argon

Building	Code building baseline, RBES	Baseline Net Zero Ready	Lower Embodied Casrbon Net
Enclosure		Building	Zero Ready
Doors	R-2.7	R-3.3	R-3.3

Building Enclosure	Code building baseline, RBES	Baseline Net Zero Ready Building	Lower Embodied Casrbon Net Zero Ready
	oncrete 100% cement		Footings - 75% cement
Concrete			Walls, columns, piers - 75% cement
Concrete			Interior slab - 100% cement
			Exterior slab - 85% cement

Building Enclosure	Code building baseline, RBES	Baseline Net Zero Ready Building	Lower Embodied Casrbon Net Zero Ready
	Basement Walls, 3" XPS foam	Basement Walls, 2" XPS foam + 2" foil-faced Polyiso foam	Basement Walls, 2" XPS foam + 2" foil-faced Polyiso foam
	No subslab insulation	4" sub-slab XPS insulation, on 7" crushed stone.	12" R-20 Glavel
Insulation	Walls: R-21 fiberglass + R-7.5 XPS, poly VB	Walls: R-21 mineral fiber + 4" XPS continuous, poly VB	Walls: 12" R-40 double stud wall with cellulose, Intello+ variable vapor retarder
	Attic R-49 fiberglass batts	Attic R-80 mineral fiber batts	Attic R-80 loose fill cellulose

Building Enclosure	Code building baseline, RBES	Baseline Net Zero Ready Building	Lower Embodied Casrbon Net Zero Ready
Cladding	Fiber cem	Fiber cement siding	
Cladding finish	3 coats water-based paint		3 coats oil-based semi-transparent stain
Roofing	Standing seam metal		

Building Enclosure	Code building baseline, RBES	Baseline Net Zero Ready Building	Lower Embodied Casrbon Net Zero Ready
Interior partitions	cold formed steel studs		wood studs
gypsum board	typical		USG EcoSmart gypsum board except where fire rated
Interior finishes	commercially available wainscoting	commercially available wainscoting	Locally milled wainscoting, NY state

Building	Code building baseline, RBES	Baseline Net Zero Ready	Lower Embodied Casrbon Net
Enclosure		Building	Zero Ready
Air leakage rate	0.3 cfm50/sq.ft. shell, 6 sides	.05 cfm50/sq.ft. shell, 6 sides	.05 cfm50/sq.ft. shell, 6 sides

Achieved 0.035 cfm50/sq.ft. shell

Mechanicals	CBECS 2020 Code Compliant	Baseline Net Zero Building	Lower Embodied Casrbon Net Zero Ready
Commissioning	No	Yes	Yes
Ventilation	800 cfm total, 50% enthalpy recovery; 66% sensible recovery, 1.2cfm/watt		
Hot Water	From boiler, 75% efficient delivery plus recirc loop losses	Solar hot water, backup with heat pump, with drainwater heat recovery on dorm showers, no recirc	
Heat	propane 90 AFUE boiler at 85% seasonal efficiency, fan coils	ASHP annual heat COP 2.3,	
Cooling	Split system AC with coils in ductwork ASHP cooling		ASHP cooling
Setpoint	70F heating 72F cooling		
Lighting	100% LED		

TYP, ROOF (EXT. TO INT.), R-60 1 HR RATED ROOF ASSEMBLY UL P522 2ND FL TRUSS PLATE 2ND FL T.O. SHEATHING TYP. EXT. WALL ASSEMBLY @ STAIR (EXT. TO INT.). R-SY-• WOOD EXT. FINISH • 1x4 VERTICAL STRAPPING WEATHER BARRIER 1/2" EXT. PLY SHEATHING, TAPED LOADBEARING 2x6 STUD WALL @ 16"OC NON-LOADBEARING 2x4 STUD WALL @16"OC. NON-LOADBEARING 24 SIDD WALL @ 18 OC DAMPSPRAY CELLULOSE INSULATION VARIABLE PERMEABILITY VAPOR BARRIER @ OUTSIDE OF STUD 1/2" GWB TYP, FOUND, WALL FINISHED MECH. CHASE 1 EXTERIOR WALL SECTION @ FIRE STAIR

The Putney School New Dorms – Building Enclosure

The Putney School New Dorms – **Building Enclosure**

Air barrier moves from outside to inside Uplift and deflection of 40 ft trusses required complex detailing

The Putney School New Dorms – **Building Enclosure**

Building floorplan complexity increases cost of achieving a high performance enclosure

First floor has 22 corners; second floor has fewer corners

The Putney School New Dorms -

Operational Energy and CO2e Modeling

Hot Water	From boiler, 75% efficient delivery plus recirc loop losses	Solar hot water, backup with heat pump, with drainwater heat recovery on dorm showers, resistance electric top-up	Solar hot water, backup with heat pump, with drainwater heat recovery on dorm showers, resistance electric top-up
MEP Commissionin	No No	Yes	Yes
Lighting	100% LED	100% LED	100% LED

Drainwater heat recovery system captures about 50% of heat going down the drain

Ganged bathrooms allow shower drainwater heat recovery from dorm room showers – two floors similar dorm room showers and avoids need for recirc hot water system

Closed Loop Drain-Back Solar Hot Water

Buildings are to be used in summer!

- 1. Near zero pressure in system
- 2. Collectors empty except when heating
- 3. Stainless tanks, copper piping
- 4. Very long antifreeze life
- 5. Very long system life
- 6. Modeled 50% savings of 15 MWh/year load

>>> Hot water out

<<< Cold water in

Hot water system

The Putney School New Dorms – Operational Energy - Modeled

The Putney School New Dorms – Operational Energy CO2e Emissions - Modeled

The Putney School New Dorms – Operational Energy CO2e Emissions

The Putney School New Dorm - Embodied CO2e Emissions - BEAM

The Putney School New Dorms –
Embodied Energy CO2e Emissions --- Life Cycle
Assessment

The Putney School New Dorms -

The BIG PICTURE What is the <u>atmospheric CO2e</u> over time?

Electric Grid Emissions Expected to Reduce Over Time

and

Persistence of CO2 in the atmosphere

Grid Electricity CO2e Emissions Over Time – NREL Cambium Model

The Putney School New Dorm - CO2e Emissions --- Persistence in Atmosphere

The Putney School New Dorms –

CO2e Emissions --- Persistence in Atmosphere

The Putney School New Dorm - CO2e Emissions --- Persistence in Atmosphere

Putney School New Dorm -- 50 years of CO2e in atmosphere from first 25 years of <u>ALL emissions</u>

CODE VERSION OF Putney School New Dorm -- 50 years of CO2e in atmosphere from first 25 years of <u>ALL emissions</u>

The Putney School New Dorms – Lessons Learned -- Critical Items

- Active commitment of owner, design team and builder
- Early engagement allows strategy to turn into design, specs and details
- Lots of corners and roofs make it much more difficult to achieve a good enclosure

The Putney School New Dorms -

Lessons Learned -- Critical Items

- Cement substitutes in concrete difficult to achieve and can have uncertainty in supply
- Building enclosure commissioning including periodic testing of enclosure
- Show up more often! Preconstruction meeting needs to be followed by same for each sub just before they begin their piece of the work
- Moisture management during construction!

The Putney School New Dorms -

Lessons Learned -- Critical Items

- ReArch CM attention to detail AND problem solving was excellent
- Skilled, can-do air sealing and insulation subcontractor (Murphy's CellTech)
- Building enclosure commissioning and MEP commissioning (BECx and Cx) with EGauge monitoring system

The Putney School New Dorms –

Lessons Learned – Pinch Points in the Process

- Complex enclosure areas required on-site head-scratching sessions with CM, framers, insulation and and air sealing contractor, enclosure commissioner
- Cement substitutes availability hard to predict – hold the line: Pre-plan, schedule. SCM landscape is shifting; e.g. ground glass

The Putney School New Dorms -

Lessons Learned – Pinch Points in the Process

- An eagle eye on submittals is critical.
 For example, low embodied gypsum board not in submittal but was easy: same cost, lighter weight and half the embodied energy. But not available for fire rated gypsum board
- Incomplete design prior to construction increases stress on process

The Putney School New Dorms - Lessons Learned - Pinch Points

- Top of exterior wall detail -- Attic air-sealing detail
- Truss uplift/partition wall/air barrier problem solving

Cumulative Embodied and Operational Emissions - 20 years

Total GHGe@ **20** years = **78** t CO₂e

Tackle Embodied & Operational Together

Performance Improvement	Reduce Operation GHGe	Possible to Achieve with Equivalent or Reduced Embodied GHGe
Reduced building size and/or surface area		
Increased quantity of insulation		
High performance windows		
Improved air tightness		
Improved equipment efficiency		~
Fuel switching		
Passive solar/ventilation design		

System Size and Life Cycle Emissions

Carbon Reduction Potential Over Project Stages

Graphic: Builders for Climate Action

Carbon cycle: more going up than coming down

Carbon storage

11

Bio-based materials may represent our best hope for radical decarbonisation through the responsible management of carbon cycles. The shift towards properly managed bio-based materials could lead to compounded emission savings in the sector of up to 40 per cent by 2050 in many regions.

Citation: United Nations Environment Programme & Yale Center for Ecosystems + Architecture. (2023). *Building materials and the climate: Constructing a new future*. United Nations Environment Programme.

Carbon storage categories

Varieties of carbon-storing products:

- 1. Waste stream materials
- 2. Agricultural & forestry residue
- 3. Purpose grown crops
- 4. Lab-grown materials
- 5. Virgin forest products

Carbon Storage
Short Cycle

Carbon Storage
Long Cycle

Short Cycle Carbon Storage

(stored this year)

CO2
(released this year)

Or

Short cycle carbon storage comes from feedstocks that are:

- At the end of their typical lifecycle (will not continue to grow and absorb CO2)
- Are about to become GHG emissions (from decay, decomposition and/or fire)

Short Cycle Carbon Storage

(stored this year)

Sh

Shrink

Increase

Short cycle carbon storage comes from feedstocks that are:

- At the end of their typical lifecycle (will not continue to grow and absorb CO2)
- Are about to become GHG emissions (from decay, decomposition and/or fire)

Long cycle carbon storage

Long cycle carbon storage comes from feedstocks that are:

- Have multi-decade growth cycles
- Will cease to be a carbon sink if harvested during growth period

Carbon Storage Accounting in Static LCA

Cumulative Emissions and the Time Value of CO₂

Graphic: RMI

Note: This graph is generated by modeling 1 ton of carbon emitted and 1 ton of carbon removed using the Temporal Climate Impacts tool developed by the University of Bath.

Cumulative Emissions and the Time Value of CO₂

Note: This graph is generated by modeling 1 ton of carbon emitted and 1 ton of carbon removed using the Temporal Climate Impacts tool developed by the University of Bath.

Cumulative Emissions and the Time Value of CO₂

Note: This graph is generated by modeling 1 ton of carbon emitted and 1 ton of carbon removed using the Temporal Climate Impacts tool developed by the University of Bath.

Cumulative Emissions and the Time Value of CO₂

Note: This graph is generated by modeling 1 ton of carbon emitted and 1 ton of carbon removed using the Temporal Climate Impacts tool developed by the University of Bath.

Two accounting methods:

COUNTINGCARBON STORAGE

VALUING
CARBON STORAGE

Two accounting methods:

Two accounting methods:

COUNTINGCARBON STORAGE

STATIC LCA

Ledger of debits & credits

VALUING CARBON STORAGE

DYNAMIC LCA

Value of interest earned & paid

Two different insights:

HOW DOES CARBON
MOVE WITHIN A
SYSTEM?

COUNTING
CARBON STORAGE

STATIC LCA

HOW DOES CLIMATE RESPOND TO CARBON FLOWS?

VALUING CARBON STORAGE

DYNAMIC LCA

Impact of Material

Over 60% of embodied GHGe of a new home come from 3 product categories, and insulation being the second highest contributor.

Embodied Carbon Emissions from New Homes by Material Category, BfCA studies.

Why a RESNET standard?

Why a RESNET standard?

LEVERAGE EXISTING MODELING DATA

EMBODIED CARBON

Source: RMI

Pilot Program – It's Happening!

100 Homes Benchmarking Study in MA (2024-25):

Create regional benchmark for policy and program development

Pilot RESNET Standard 1550 to inform improvements

Prepare industry: rater training, workflow, QA/QC

Integrate energy modeling and embodied carbon assessment software

EDUCATION & CLIMATE ACTION

veep.org