

August 4, 2025

AeroBarrier Technology Development

Mark Modera
UC Davis and Aeroseal

Presentation Overview

Conceptualization of Envelope Sealing Process

- Seal Rate Analysis
- Transport Efficiency
- Sealing Simulation Tool

Dedicated Test Facility

- Sealing Rate Comparison
- Separation of Effects Impacting Seal Rate

New Technology Developments

- Smaller, Lighter, Faster System
- Non-Electric Heat
- Airless Atomization

New Applications

- Ceiling Plenum Sealing
- Underfloor Sealing

Envelope Sealing Process

- Pressurize Building with a Fan
 - Blower Door on Steroids

- Air carries sealant to Leaks
- Track Sealing Process
 - Feedback to Technician
 - Documentation for Builder (or homeowner)

ENVELOPE SEALING REPORT

Envelope Sealing Performed For:

DALE | ROADHOUSE HOMES 2747 EAST 25TH AVENUE VANCOUVER, BC V5R1H6

DATE: 2/1/2019 BUILDING TYPE: SINGLE FAMILY RESIDENCE

Envelope Sealing Results:

When we arrived,

YOUR HOME HAD: 1825.0 CFM of Leakage, equivalent to a

219.7 Square Inch Hole or 4.74 Air Changes per Hour

(for your 2401 square-foot structure enclosing a volume of 23103 cubic feet).

After we finished,

YOUR HOME HAS:

403.1 CFM of Leakage, equivalent to a

48.5 Square Inch Hole or 1.05 Air Changes per Hour

This corresponds to a 77.9% Reduction in Envelope Leakage.

Note: Envelope leakage and air-change results are calculated at a standard pressure of 50 Pa.

Elapsed Sealing Progress:

Envelope Sealing Performed By:

PACIFIC AEROBARRIER SYSTEMS

UNIT 152 - 628 E. KENT AVENUE S. VANCOUVER, BC V5X 0B2 604.222.2100

FO@PACIFICAEROBARRIER.COM

AEROBARRIER CASE ID: SYSTEM DESCRIPTION: AIR SEAL DESCRIPTION: HARDWARE:

8016
HOME ENVELOPE
ENVELOPE SEALING

Conceptualization of Envelope Sealing Process

Seal Rate Analysis

$$Seal\ Rate\ \left[\frac{in^2}{min}\right] = \frac{InjRate\ \left[\frac{gm}{min}\right]*\eta_{trans}\ [-]*\eta_{dep}\ [-]}{SealDensity[gm/in^2]}$$

where:

InjRate is max sealant injection (limited by psychrometrics)

 η_{trans} is Transport Efficiency (fraction getting to leaks)

 η_{dep} is Deposition Efficiency (fraction depositing in leaks)

SealDensity is sealant required to seal a given size leak

Conceptualization of Envelope Sealing Process Transport Efficiency

Conceptualization of Envelope Sealing Process

Transport Efficiency

Basically a race between getting to the leaks before falling to the floor

$$\eta_{trans}\left[-\right] = \frac{FanFlow\left[cfm\right]}{FanFlow\left[cfm\right] + V_{settling}\left[\frac{ft}{min}\right] * FloorArea\left[ft^2\right]}$$

where:

 $V_{\it settling}$ is Settling Velocity (like terminal velocity), a strong function of particle size

Conceptualization of Envelope Sealing Process Sealing Simulation Tool

 Uses concentration measurement boxes to determine Transport Efficiency at FOUR different locations

 Uses re-usable leakage plates to assure the same conditions for all tests

- Uses scale to weigh plates before and after sealing to determine SealDensity
- Uses 2nd scale to weigh total sealant injected
 - Facilitates
 calculation of
 sealant use
 efficiency
 - Facilitates
 calculation of
 Deposition
 Efficiency

New Technology Developments

Non-Electric Heat = Smaller, Lighter, Faster System

- 220 V Fan
- Large heavy Compressor/Generator
- Compressed Air lines running into house

- Non-Electric Heat
- 110 V Fan
- 35% less weight

New Technology Developments

Non-Electric Heat + Airless Atomization = Smaller, Lighter, Faster System

- Non-Electric Heat
- 110 V Fan
- 35% less weight

- Airless Atomization No Compressed Air
- Battery-powered sealing stations
- Another 50% weight and volume reduction

Dedicated Test Facility Application

Quantifying Transport Efficiency

$$\eta_{trans} [-] = \frac{Leak - Site\ Concentration\ [ppm]}{Input\ Concentration\ [ppm]}$$

Transport Efficiency

Dedicated Test Facility Application

Getting Airless sealing speeds to match Compressor Systems

Field Testing Airless System

- Saves 20 mins on set-up and clean-up
- Has had longer injection times versus
 Compressed Air
- Last week AIRLESS showed shorter injection times versus Compressed Air, based upon innovations tested in the lab

Ceiling Plenum Sealing

PROTOCOL

- Preparation
 - Applied spray foam to patch large existing openings between ceiling plenum and adjacent ceiling plenum (i.e. gaps in corrugated roof deck)
 - Positioned 3 mobile sealant injection stations in the ceiling plenum nearest the perimeter walls
 - Opened ceiling tiles furthest from the sealing stations to ensure air penetration from the blower door into the ceiling plenum
- Injection performed during normal operating hours in an occupied office building
 - Used an additional blower door to pressurize an adjacent room to limit sealant infiltration into the rest of the facility

Ceiling Plenum Sealing

Results

- Sealed approximately 300 cfm50
- Stopped prematurely due to some fogging of occupied space
- Should be performed during unoccupied hours
 - Not enough fogging to cause deposition, but enough to cause complaints

Underfloor Air Distribution Sealing

Parameter	Value
Envelope Height (H1)	9.9 ft
Subfloor Height (H2)	1 ft
Envelope Width (W)	18.2 ft
Envelope Length (L)	31.3 ft
Envelope Volume (L x W x H1)	5,630 cubic feet

Underfloor Air Distribution Sealing

Parameter	Value
Envelope Pre-seal Leakage	6.3 ACH50
Envelope Post-seal Leakage	4.9 ACH50
Subfloor Initial Leakage	747 CFM25
Subfloor Final Leakage	75 CFM25

Presentation Take-Aways

Facility for Precise Measurement of Aerosol Envelope Sealing Technologies

Separates out factors influencing performance

Airless Envelope Sealing is the Future

- Surpassed current Air-Assist atomization in lab and field
- Dramatically reduces equipment weight and volume
- Reduces set-up and break-down time requirements

New Applications

Continue to find new applications for the technology