Thermal Energy Storage in High Performance Buildings

Twenty-Sixth Westford Symposium on Building Science

Marc Rosenbaum, PE, CPHC, MA CSL – Energysmiths – West Tisbury, MA

Why Bother?

Grid Stability and Integration of Renewable Energy Sources

SEASONAL LOAD PROFILES ON GRID

General daily patterns / grid loads are predictable, variability is mostly based on space conditioning loads.

Huge Thanks to Lisa White and PHIUS for these slides

CA ISO Load

CA ISO Renewable Generation

CA ISO Load After Renewables

ISO-NE

New England ISO - April 2, 2022

Emissions Vary

Not all kWh's (used and produced) are equal

Hourly Marginal Carbon **Emissions will** continue to be dynamic.

Price to meet peak grid loads will remain dynamic.

©Phius 2022

Strategies

- Load reduction in buildings, both thermal and electrical
- Grid-interactive control two way grid
- Load shifting in time

Energy storage is a load-shifting strategy

Solar Net Metering Is Under
Threat All Over The Threat All Over The US

NET METERING UNDER ATTACK (AGAIN)!

February 21, 2023 | 2 min read

Why Bother?

Resilience in Grid Outage Events

Electric Storage Batteries

- Most flexible type of storage
- Provides grid outage resilience
- Provides load shifting and peak shaving
- Boosts % of site-generated energy that is consumed on-site

Electric Storage Batteries

- **Expensive**
- Capacity drops over time
- Don't provide the inherent resilience of a superb enclosure with thermal storage
- Best application may be in distributed microgrids
- For many of us as homeowners, V2B is the future

Nation's first Electric CarShare Vehicle-to-Building (V₂B) Technology!

Heat is the Biggest Load

Electric usage February 8th-10th 2016 after snowstorm covered the PV system. Superinsulated house with passive solar gain

Time Constant

From *On the thermal inertia and time constant of single family houses*, Hedbrant

Time Constant for Buildings

Thermal Capacity per ˚F change in temperature (BTU/˚F)

Heat loss coefficient, UA (BTU/hr-˚F)

A range of thermal capacity of light frame houses might be 5-7 BTU/sf-˚F

A range of UA of light frame houses might be 0.125 – 0.625 BTU/hr-sf-˚F (2000 sf house 15-75,000 BTU/hr)

Therefore, a range of time constant of light frame houses would be 10-50 hours

A 2018 paper (John et al) analyzed data from over 10,000 Ecobee thermostats and estimated that a majority of time constants were in the 15-55 hour range

Time Constant and Cool Down

1 Week Heating Resilience

CHICAGO NV Heating Outage Resilience

Thanks to Al Mitchell, Graham Wright, and PHIUS for this slide

A Taxonomy of Thermal Storage

Passive Solar Design Handbooks

https://www.osti.gov/servlets/purl/5672634

Passive Freestanding

Phase Change pouches over metal ceiling panels

Photos courtesy of Amanda Nickerson and E. Lord – Society for the Protection of New Hampshire Forests Conservation Center – Banwell Architects

Passive Structurally Integrated

Doug Kelbaugh's Trombe (mass) wall house in Princeton NJ 15" concrete with black selective surface Mass walls delay the solar heat delivery (best when unvented)

Passive Thermal Storage

The material parameter that matters is *thermal effusivity e*

 $e \neq k^* \rho^* C p$

Thermal effusivity is a measure of a material's ability to exchange thermal energy with its environment.

The square root of thermal conductivity (k) times density (ρ) times specific heat (*Cp)*. Density times specific heat is volumetric heat capacity - how much heat a material holds per degree of temperature change $(BTU/ft^3 - F)$.

So, how much energy can penetrate into the surface of a material is dependent on both how well it conducts heat, and how much heat it can hold.

Thermal Effusivity of Materials

Thin layers of materials like plaster and wood can store usable amounts of heat when applied over lots of area

Direct Gain Passive Guidelines

- Up to 7-8% net S glazing/floor area needs no additional storage
- Above that, 5-6 sf of *directly sunlit* thermal storage per 1 sf additional sf of glazing
- Or, 40 sf of indirect (convective) thermal mass connected to the space (here, thin is OK)

Plaster and wood

Straw Bale and Timber - New Frameworks Natural Building

Masonry floors, wood structure & decking

Kern Center Living Building Hampshire College – Bruner Cott

Masonry floors, wood structure & decking

Winston Underground House – Don Metz Architect

Cross-laminated Timber

Precast Concrete (or other masonry?)

Hillside Center for Sustainable Living Hall & Moskow (developers) Moskow Linn Architects

Middlebury Bicentennial Hall – Payette Architects

Precast Concrete

- Precast concrete on steel beams
- Absorbs daily heat (no A/C)
- Shape reflects uplighting down
- Shape reflects sound onto sound absorption panels

Wessex Water – Bath, England Bennetts Architects Buro Happold Engineers *Integration of design team from conceptual stage*

NERDS

Active Thermal Storage

- Storage is (usually) remote
- Storage is dispatchable according to need
- Much higher ΔT is possible
- Power is needed to charge/discharge (not always both)

Masonry Structurally Integrated - Air

- Hollowcore precast planks
- Ventilation air delivered in space conditioning air
- 35,000 sf building, 5 zones
- CMU walls add passive mass
- Highest occupant satisfaction in PROBE Study

Masonry Structurally Integrated - Hydronic

- PEX tubing in topping slab over precast hollowcore plank
- Both floor and ceilings are thermally active
- Floor dominates in heating; ceilings dominate in cooling
- Latent load removed in ventilation air

Dartmouth McLaughlin Dorms – Moore Rubell Yudell / Bruner Cott Dan Nall – mechanical engineer

Masonry Structurally Integrated - Hydronic

PEX tubing in topping slab over precast hollowcore plank

Fan-forced Rockbed

Active storage; passive release

Solar attic above greenhouse charges the air up to 110˚F for more energy stored per CFM in

this VT house this VT house $\frac{1}{2}$ Matick Community Greenhouse – Jon Romig Architect

Fan-forced Rockbed

Fan-forced Water Containers

Active storage; passive release

45˚F min. temp. at -7˚F outdoors

Fan-forced Water Containers

Active storage; passive release

Active Solar Thermal Water Storage

1,200 gallons @ 80˚F ∆T Back-up energy in very low energy solar buildings varies year to year (2:1 here)

 $= 800,000$ BTU

Active Annual Solar Thermal Water Storage

Swiss Federal Statistics Building

- Prototypical Multifamily
- 23,300 sf
- 32 Units
- Phius Enclosure Spec

Thanks to Al Mitchell and PHIUS for these slides

Time of Day

PV/A-WHP w/ Thermal Water Storage

- 4,500 sf footprint airplane hangar with office space
- Owner wanted maximum onsite consumption of solar energy
- Non-optimal solar orientation and tilt
- A-WHP and hydronic radiant floor slab
- "Brick in a box" Excel hourly model to inform sizing of storage and PV
- Hourly model of PV gain and outdoor temp from PV Watts
- Hourly heating; cooling; DHW; EV; plug and lighting loads
- A-WHP COP vs. outdoor temp varied from manufacturer's data

Model Inputs and Outputs

Model starts September 1st

Results: Ten Cases Modeled

The Winter Trough

1,000 Gallons (98 kWh) of Thermal Storage

10,000 Gallons (978 kWh) of Thermal Storage

Note that the vertical axis, kWh in storage, is *ten times higher* in the 10,000 gallon case.

Solar availability and high heating loads always produce the winter trough. The same result occurred on the solar thermal house in Hanover, NH – the tank dropped from peak temperature to minimum temperature for 6-8 weeks then bounces back up.

Add Electric Batteries

This is a simplified model on the battery side, likely overestimates the energy stored

An Off-grid House

- 4,400 sf house on Martha's Vineyard with a heated pool
- 32.4 kW PV; 138 kWh battery storage; propane generator
- Hourly model to optimize systems
- Systems design by Brice Delhougne Energylogik

An Off-grid House

Thank You!

