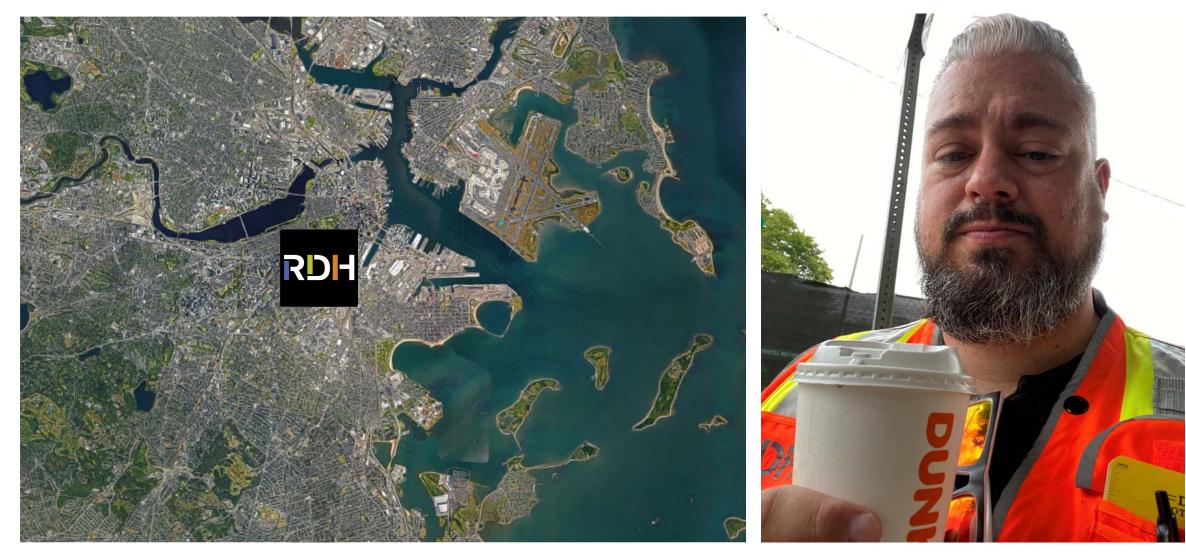
Passive House

and the Shifting Energy Landscape

Westford Symposium August 7, 2024


Andrew Steingiser | RA, CPHC

Making Buildings Better™

Hello From Boston

Agenda

→ Massachusetts Stretch Energy Code Context

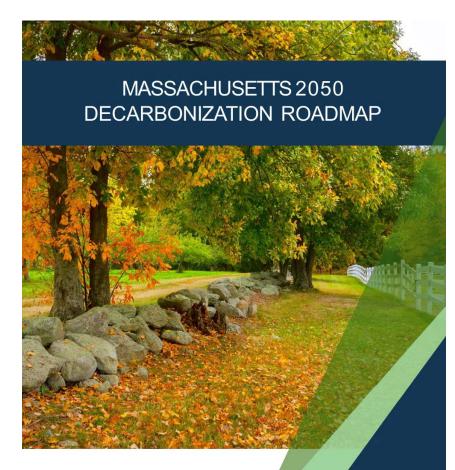
→Passive House in Existing Buildings

→ Passive House in Non-Residential New Construction

 \rightarrow Passive House in Multi-family residential

→Conclusions

Energy Code Context

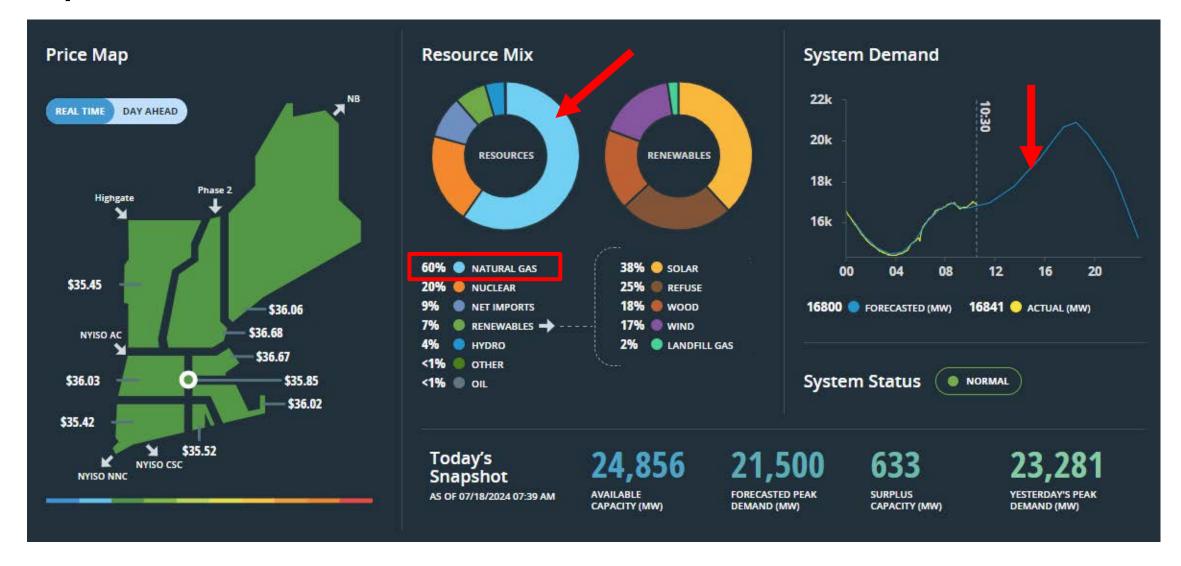

Decarbonization in Massachusetts

March 26, 2021 Governor Baker signed into law:

→ 50% carbon emissions reduction by 2030
→ 75% carbon emissions reduction by 2040
→ Net Zero carbon emissions by 2050

RDH

New Stretch Code and Specialized Opt-In code make meaningful impacts to design practice



A report commissioned by the Massachusetts Executive Office of Energy and Environmental Affairs to identify cost-effective and equitable strategies to ensure Massachusetts achieves net-zero greenhouse gas emissions by 2050.

December 2020

Operational Carbon

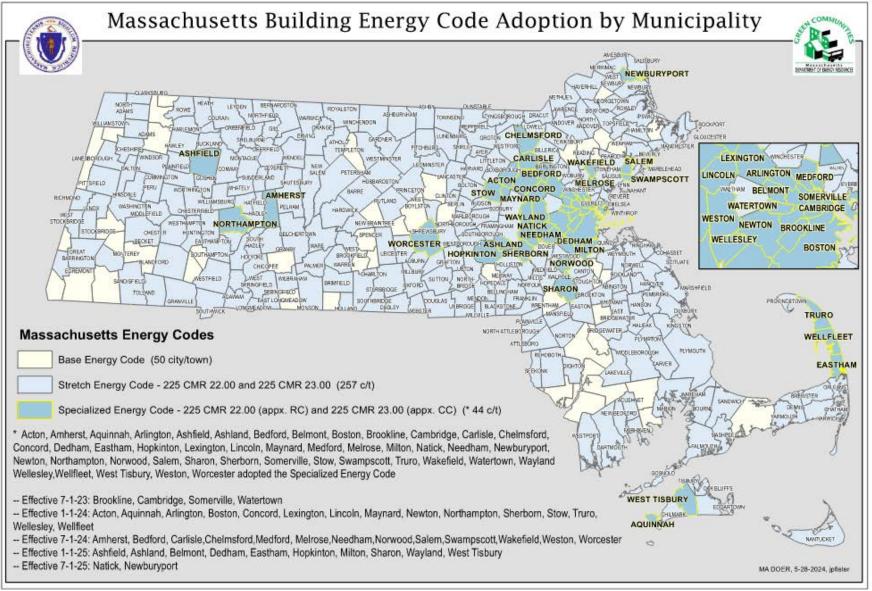
Massachusetts Energy Code

Base Code (IECC 2021*)

- New construction in towns & cities not a green community
- 52 communities

*Expected from BBRS: July 2023 (current base code is IECC 2018 with MA amendments)

Stretch Code (2023 update)


- New construction in towns & cities that are a green or stretch community
- 299 communities

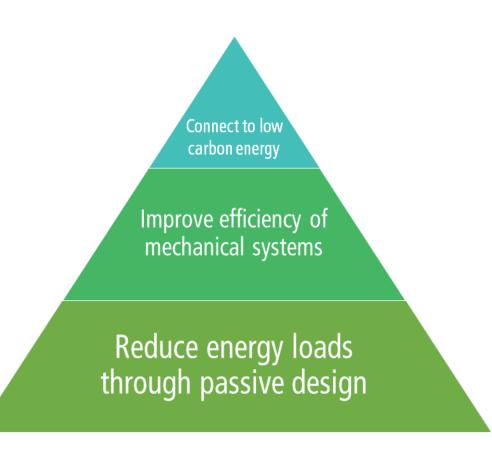
Residential : Jan 2023 Commercial: July 2023

Specialized Code ("Net-Zero")

- New Construction in towns & cities that vote to opt-in to this code
- Effective date: Typically 6-11 months after Town/City vote

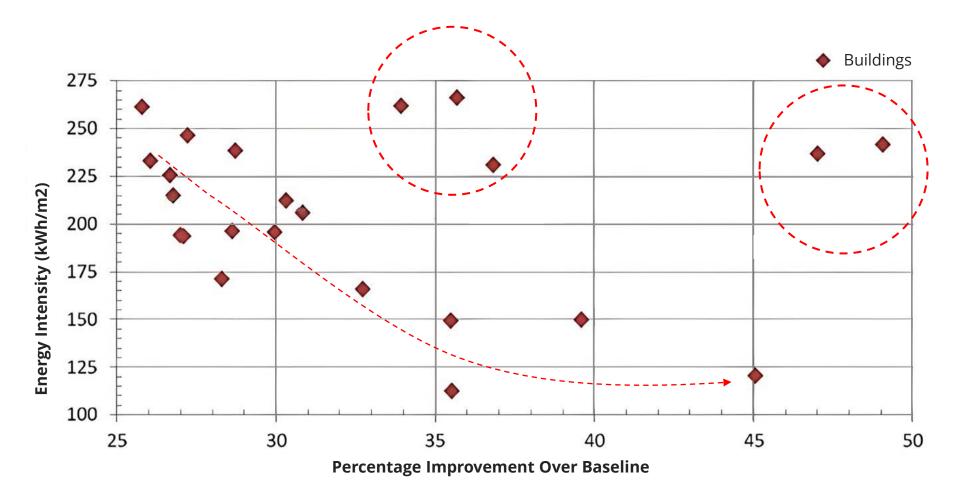
Massachusetts Stretch Code

Source: Massachusetts DOER

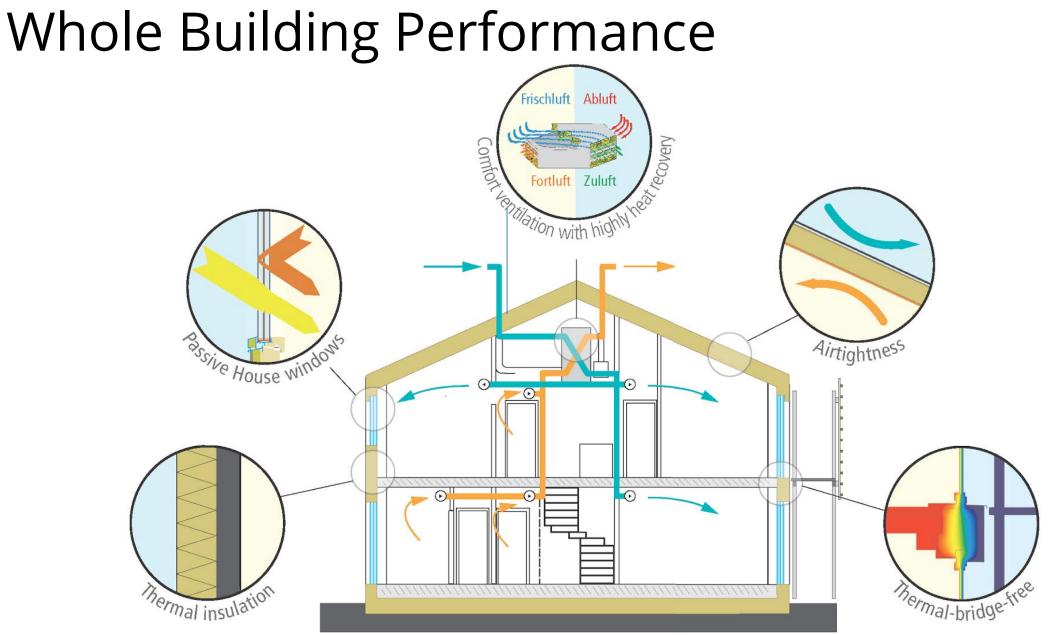

Absolute Performance Metrics

→Passive House

→TEDI

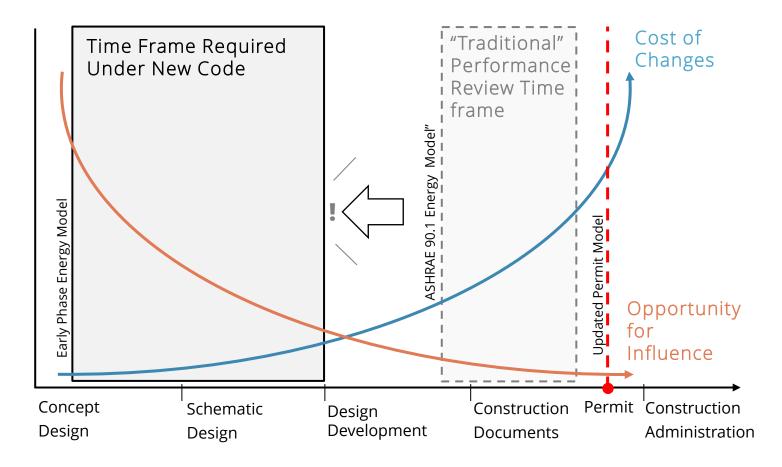

→ASHRAE 90.1 with Performance Energy Index Targets

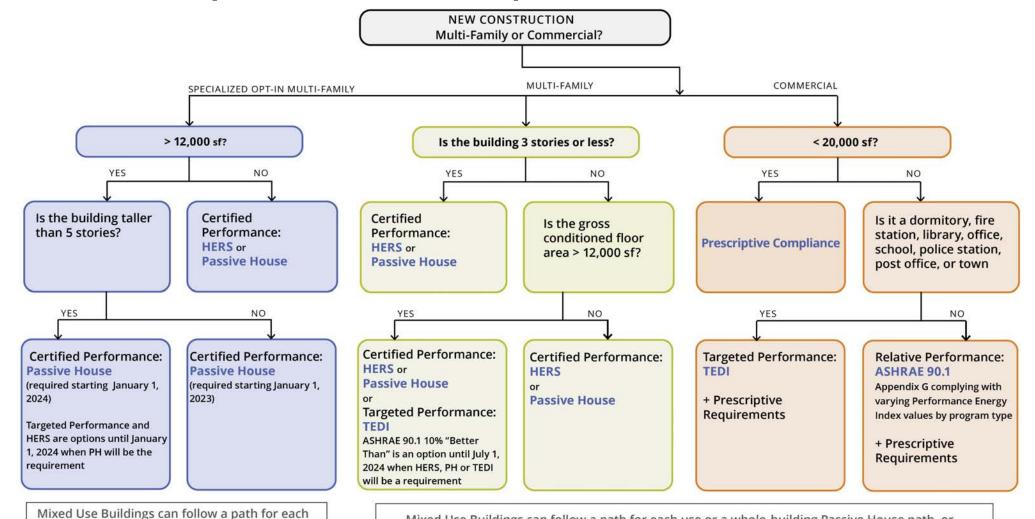
→HERS


Source: Toronto Zero Emissions Buildings Framework (2017)

Relative Performance – ASHRAE 90.1

 \rightarrow Some correlation between relative savings and energy use intensity of the building

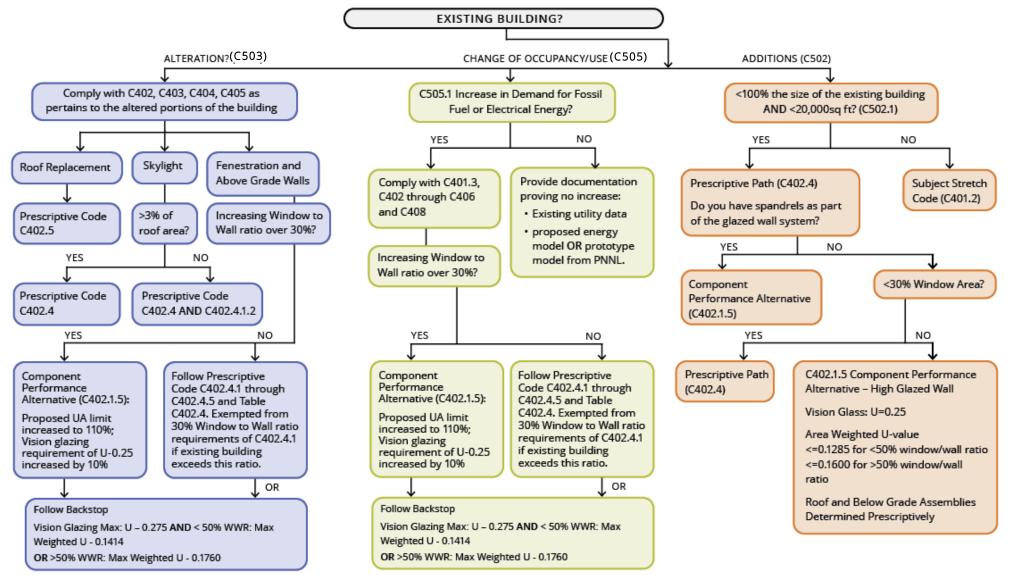

 \rightarrow BUT what about all the outliers?


Front-loaded Design Process

Most cost-effective approach to delivering buildings = make the right decisions early

- → Energy Model + Set performance targets early
- ightarrow Design accordingly with whole team
- → Update modeling and check design through subsequent phases

Stretch + Specialized Opt-In Code


Mixed Use Buildings can follow a path for each use or a whole-building Passive House path, or TEDI + Prescriptive Requirements Path

PASSIVE HOUSE IS A CODE COMPLIANCE PATH OPTION FOR ANY BUILDING

RDH

use or a whole-building Passive House path

Existing Buildings Stretch Code

Stretch Code + Specialized Opt-In Code

PATHWAY

ADDITIONAL MANDATORY STRETCH CODE PROVISIONS **SPECIALIZED OPT-IN**

- \rightarrow Envelope Derating (C407.2)
- **Prescriptive**

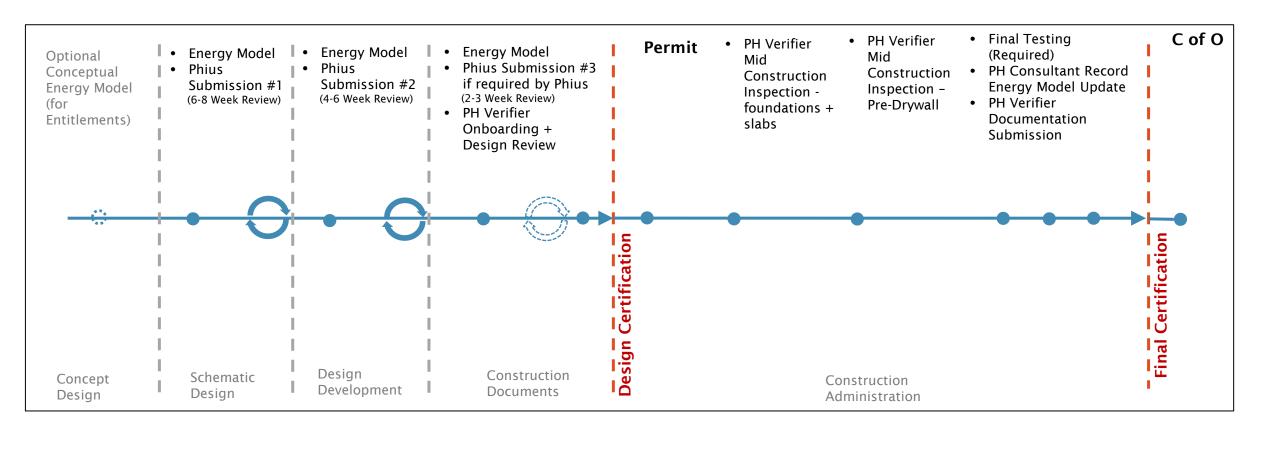
"Targeted" performance

"Relative"
performance

Passive House

HERS

 \mathbf{R}

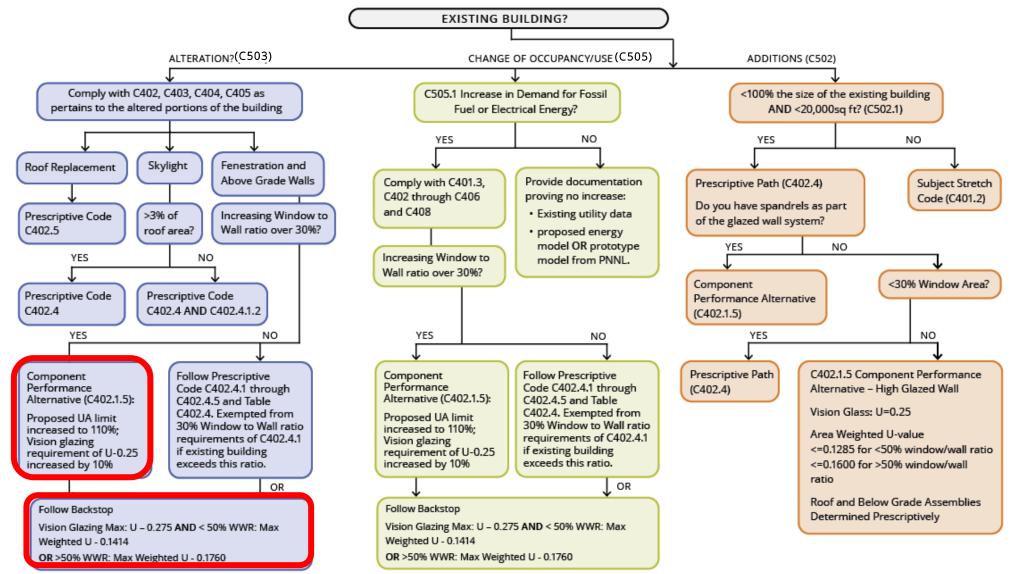

- → Airtightness (C402.5)
- → EV Readiness (CC101.5)
- → PV Readiness (CB103)
- \rightarrow Additional Efficiency (C406.1)
- \rightarrow Partial Electrification for High Ventilation (C401.4.1)
- \rightarrow Envelope Backstop (C402.1.5) with Derating (C407.2) (Except for Prescriptive)
- \rightarrow EV Readiness (CC101.5)
- → PV Readiness (CB103)

Pick One (CC101.3):

- \rightarrow Net Zero (CC 103)
- \rightarrow All-Electric (CC 104)
 - \rightarrow Mixed Fuel (CC 105)

 \rightarrow +PH for MF Residential over 12,000 sf (CC101)

Design+Phius Certification Process


PH in Existing Buildings

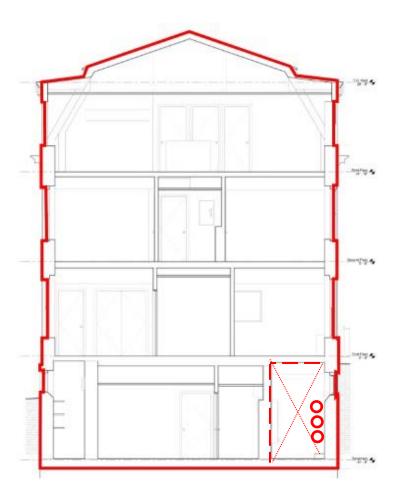
The project you are about to see is a PHI project. The names have been changed to protect the innocent.

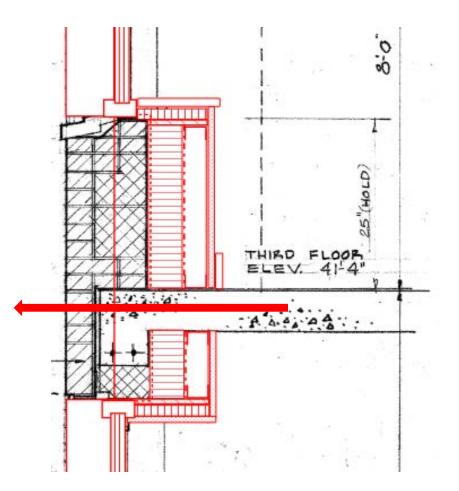
Academic Admin. Building, Boston, MA

Existing Buildings Stretch Code

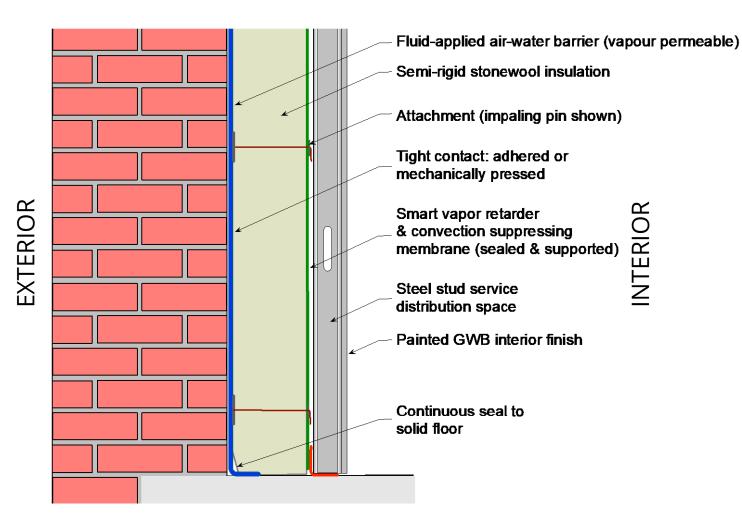
RDH

EnerPHit is an alternate existing building code compliance path

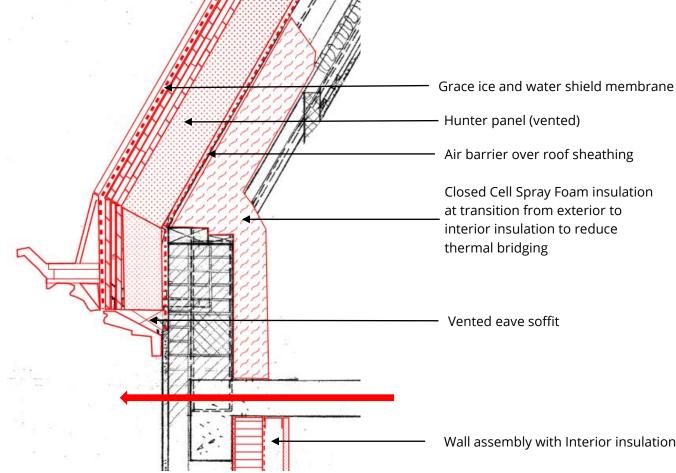

Proposed Vertical Enclosure Backstop

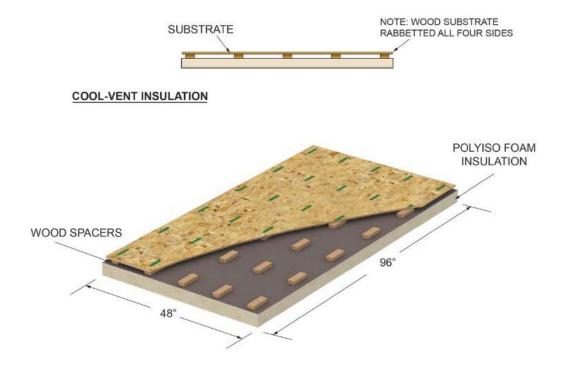

4" Mineral Wool with U-0.22 Windows

							Totals	751.2	100%	Overall Wall & Glo	zing
Transmittance	Include	Transmittance Description	Area, Length or Amount	Units	Transmittance	Units	Source Reference	Heat Flow	%Total Heat	Thermal Performe	
Туре	melode	nansminance beschpilon	Takeoff	OT INS	Value	Orms		(BTU/hr°F)	Flow	Opaque U-Value	
Clear Field	V	AGW1 Block wall with stucco	2519.83	ft2	0.051 R-20	BTU/ hr ft° °F	Parallel Path R- value Method	128.5	17%	(BTU/hr ft2 oF)	0.140
Clear Field	•	AGW2 Block wall with brick	1850.32	ft2	0.052 <mark>R-1</mark> 9	BTU/ hr ft² °F	Parallel Path R- value Method	96.2	13%	Effective R-Value	
Clear Field	•	Windows (all window types)	984.79	ft2	0.220 R-4.5	BTU/ hr ft² °F	Parallel Path R- value Method	216.7	29%	(hr ft2 oF/BTU)	7.2
Clear Field	•	Opaque Exterior Door	22.82	ft2	0.400 R-2.5	BTU/ hr ft² °F	Parallel Path R- value Method	9.1	1%		
Linear Interface Detail		Punch Window & Glazed Door installation - Top	185.53	ft	0.086	BTU/ hr ft °F	BETBEG 7.3.8	16.0	2%	Target: < U-0.141	
Linear Interface Detail	•	Punch Window & Glazed Door installation - Left/Right	539.69	ft	0.079	BTU/ hr ft °F	BETBEG 7.3.8	42.6	6%		
Linear Interface Detail		Punch Window & Glazed Door installation - Sill	185.53	ft	0.088	BTU/ hr ft °F	BETBEG 7.3.8	16.3	2%		
Linear Interface Detail	•	Exterior Wall Corner	80.38	ft	0.000	BTU/ hr ft °F	PHI TB Catalogue V3	0.0	0%		
Linear Interface Detail	•	Foundation Wall to Slab	160.17	ft	0.376	BTU/ hr ft °F	PHI TB Catalogue V3	60.2	8%		
Linear Interface Detail	•	Typical intermediate floors	320.34	ft	0.376	BTU/ hr ft °F	BETBG 7.2.18	120.4	16%		
Linear Interface Detail	V	Wall to Roof Transition	273.49	ft	0.162	BTU/ hr ft °F	PHI TB Catalogue V3	44.3	6%		
Linear Interface Detail	V	Opaque door perimeter	20.08	ft	0.040	BTU/ hr ft °F	RDH Initial Assumption	0.8	0%		
Point Interface Detail				#	0.000	BTU/ hr °F		0.0	0%		

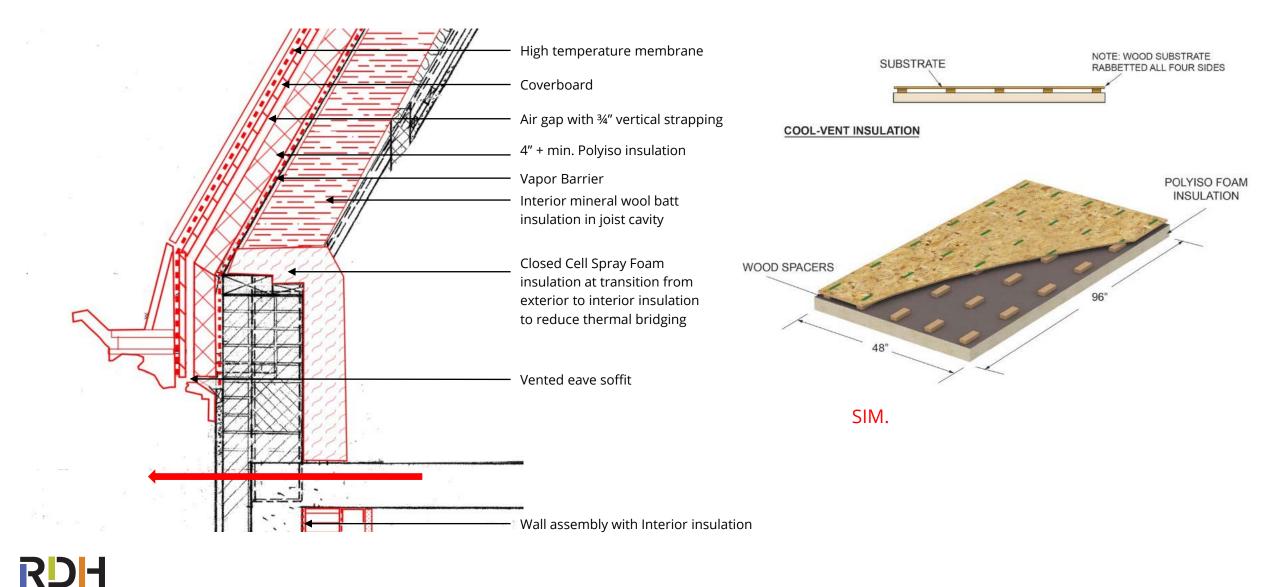

 $\rightarrow\,$ This starts to look like EnerPHit

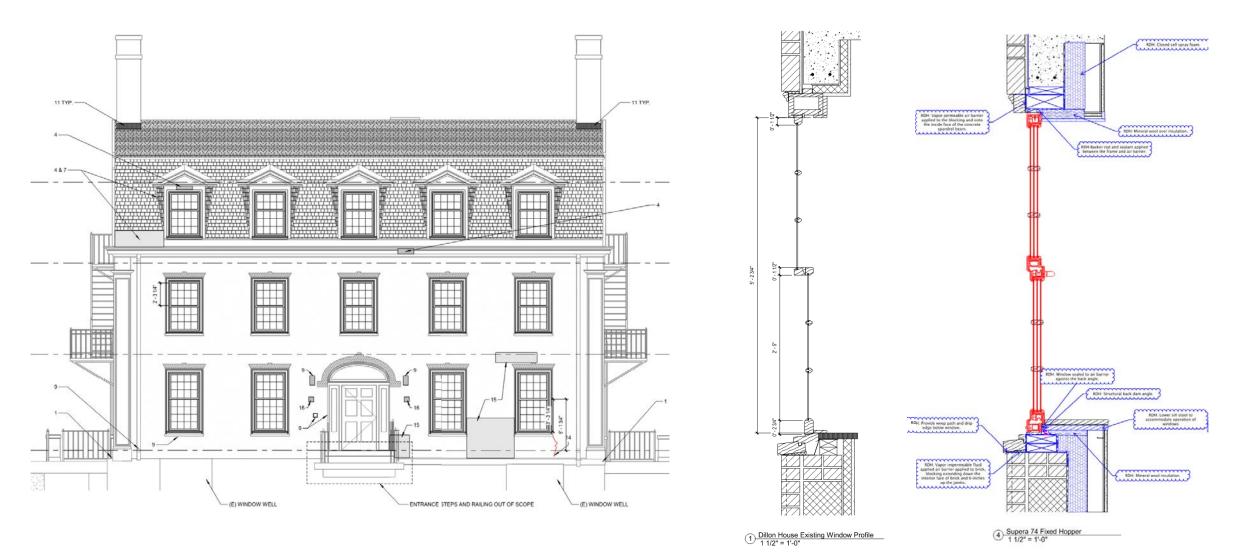
Proposed Above Grade Wall Modifications




Existing wall – Interior Insulation

Proposed Roof Modifications – Exterior




Wall assembly with Interior insulation

Proposed Roof Modifications – Split Insulation

Windows

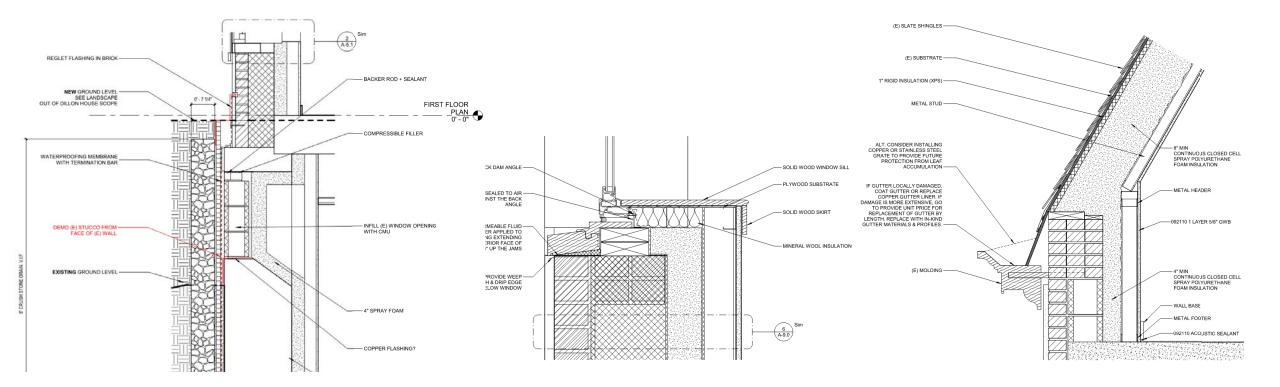
EnerPHit Energy vs Component Method

EnerPHit energy demand criteria

2.				
	Heating	Cooling		
Climate zone according to PHPP	Max. heating demand	Max. cooling + dehumidification demand		
	[kWh/(m²a)]	[kWh/(m²a)]		
Arctic	35			
Cold	30			
Cool- temperate	25	equal to		
Warm- temperate	20	Passive House requirement ¹		
Warm	15			
Hot	15			
Very hot	15			

EnerPHit component criteria

	Op	aque envel	ope ¹ agains	it		Wind	Ventilation				
	ground			Overall ⁴			Glazing ⁵	Solar load ⁶	ventilation		
Climate	Insu- lation	Exterior insulation	Interior in- sulation ²	Exterior paint ³		ax. he		Solar heat gain	Max. specific	Min. heat	Min. hu
zone according to PHPP	Max. heat transfer coefficient (U-value)			Cool colours	transfer coefficient (U _{D/W,installed})			coefficient (g-value)	solar load during cooling period	reco- very rate ⁷	midity re- covery rate ⁸
1	[W/(m²K)]			-	[W/(m ² K)]			1.	[kWh/m ² a]	(%
				-	C	6	C				
Arctic		0.09	0.25		0.45	0.50	0.60	U _g - g*0.7 ≤ 0		80%	200 A
Cold	Deter-	0.12	0.30		0.65	0.70	0.80	U = a*1.0 < 0		80%	
Cool- temperate	mined in PHPP from	0.15	0.35		0.85	1.00	1.10	U _g - g*1.6 ≤ 0		75%	-
Warm- temperate	specific heating	0.30	0.50	-	1.05	1.10	1.20	Ug - g*3.2 ≤ -0.6	100	75%	-
Warm	and	0.50	0.75	244 C	1.25	1.30	1.40	-		-	-
Hot	cooling degree days	0.50	0.75	Yes	1.25	1.30	1.40	4		-	60 % (humid climate)
Very hot	against ground.	0.25	0.45	Yes	1.05	1.10	1.20	*		-	60 % (humid climate)

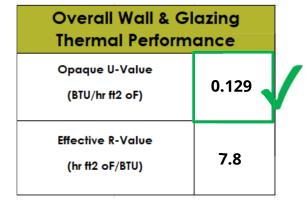

Minimum Requirements vs. PH 4" Mineral Wool with U-0.22 Windows

Component	Stretch Code Design	EnerPHit Component Method			
Above Grade Walls	R-20 (U-0.051) 4" mineral wool at interior face of brick	R-20 4" Mineral wool at interior face of brick			
Below Grade Walls + Slab	R-19 4" Mineral Wool at interior face of foundation wall	Same as Stretch Code			
Roof	R-32 Split Insulation approach to achieve Prescriptive R- value	R-38 Same with an additional 1"+ of insulation			
Windows	Simulated Double-Hung Tilt-Turn windows (U-0.275 max).	TBD EnerPHit requirement U-0.15 BTU/hr.ft2.F			
Airtightness	0.35 cfm/ft ² 75 (+/- 3.0 ACH50)	+/- 0.1 cfm/ft ² 75 (~1.0 ACH50)			
Ventilation 75% efficient heat recovery with demand control ventilation.		PHI-certified HRV/ERV			
Heating & Cooling Existing District Energy Systems		Same as Stretch Code 🛛 🗸			
.ighting Controls automatic. All lighting controls automatic. All spaces with occupancy or vacancy sensors with override switches and dimming.		Same as Stretch Code 🗸			
Appliance + Plug Load	At least 50% of installed receptacles shall be controlled via Automatic Receptacle control requirements.	Same as Stretch Code			

EnerPHit Energy vs Component Method

Specific building characteristics	with reference to t	he treated floor a	rea					
		Treated floor area m ²		371.0		Criteria	Alternative criteria	Fullfilled? ²
Space heating <25 re	auired	Heating demand kWh/(m		75	≤	-	-	
		Heating loa	d W/m²	38	≤	-	-	-
Space cooling	ace cooling & dehum. demand kWh/(m²a)				≤	-		-
	Frequency of ov	verheating (> 25 °C	·) %	-	≤	-		-
Frequency	of excessively high l	humidity (> 12 g/kg)%	1	≤	10		Yes
Airtightness	ss Pressurisation test result n ₅₀ 1/h			1.0	≤	1.0		Yes
Moisture protection								
Smallest temperature factor f _{Rsi=0.25 m²K/W} -				0.70	≥	0.87	0.74	No
Thermal comfort	All red	quirements fulfilled	? -					No
		U-value	W/(m²K)		≤	0.82		
		U-value	W/(m²K)		≤	0.98		
		U-value	W/(m²K)		≤	1.07		
		U- <u>val</u> ue	W/(m²K)		≤	0.45		
Non-renewable Primary Energy (PE)	PE deman	d kWh/(m²a)	219	≤	-		-
		PER deman		102		151	151	
Primary Energy Renewable (PER) Renew. energy projected bu	ew. energy generation (in rel. to rojected building footprint area)		0	≥	-	-	Yes

Evolving Enclosure

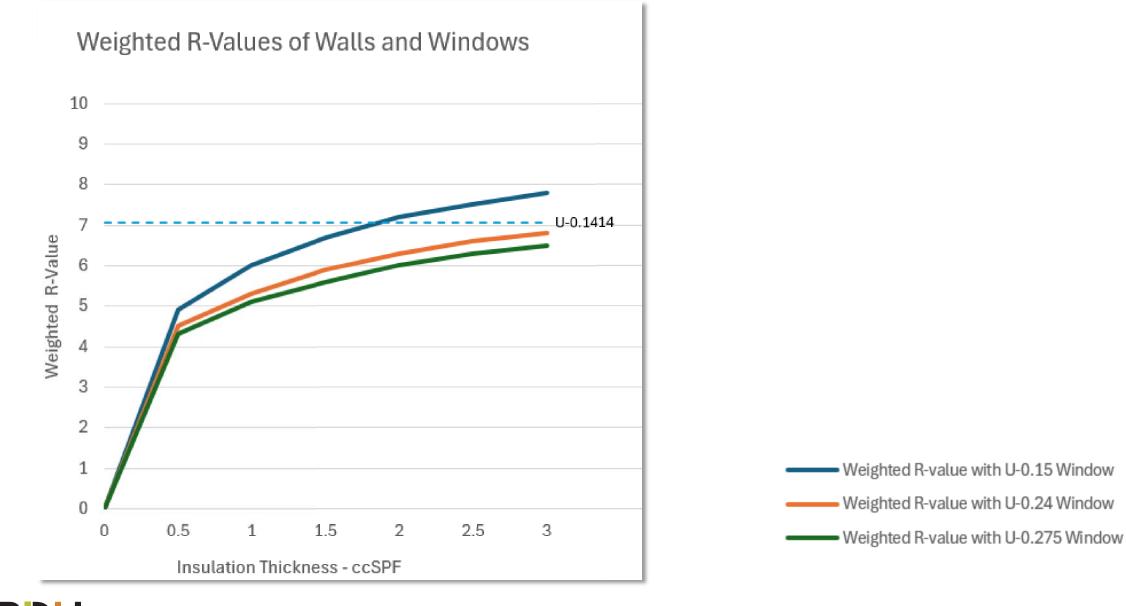


Proposed Enclosure Backstop Update

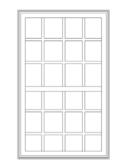
4" Closed Cell Spray Foam with U-0.275 Windows

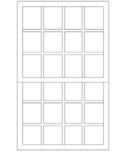
RDH

					Totals	691.4	100%
Transmittance Description	Area, Length or Amount Takeoff	Units	Transmittance Value	Units	Source Reference	Heat Flow (BTU/hr°F)	%Total Heat Flow
AGW1 Block wall with stucco	2519.83	ft2	0.031	BTU/ hr ft² °F	Parallel Path R-value Method	78.1	11%
AGW2 Block wall with brick	1850.32	ft2	0.037	BTU/ hr ft² °F	Parallel Path R-value Method	68.5	10%
Windows (all window types)	984.79	ft2	0.275	BTU/ hr ft² °F	Component Performance Alternative C402.1.5	270.8	39%
Opaque Exterior Door	22.82	ft2	0.370	BTU/ hr fl² °F	Prescriptive Req. C402.1.4	8.4	1%
Punch Window & Glazed Door installation - Head	185.53	ft	0.083	BTU/ hr ft °F	BETBEG 7.3.8	15.4	2%
Punch Window & Glazed Door installation - Jambs	539.69	ft	0.083	BTU/ hr ft °F	BETBEG 7.3.8	44.8	6%
Punch Window & Glazed Door installation - Sill	185.53	ft	0.083	BTU/ hr ft °F	BETBEG 7.3.8	15.4	2%
Foundation Wall to Slab	160.17	ft	0.367	BTU/ hr ft °F	BETBG 7.2.18	58.8	9%
Typical intermediate floors	320.34	ft	0.367	BTU/ hr ft °F	BETBG 7.2.18	117.6	17%
Wall to Roof Transition	273.49	ft	0.050	BTU/ hr ft °F	BETBG 8.4.3	13.7	2%
		#	0.000	BTU/ hr °F		0.0	0%

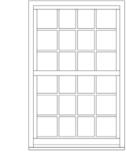


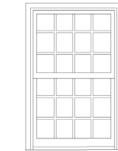
Target: < U-0.141


ightarrow The client chose this option as the project evolved, prior to committing to EnerPHit


Higher U-value windows vs More Wall Insulation

Windows

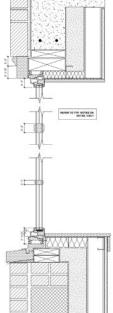




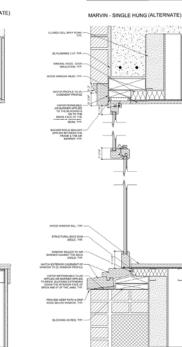
ALPEN ZR-6 - SINGLE HUNG (BASE)

Alpen Zenith ZR 6

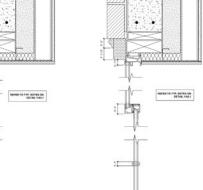
Single Hung

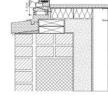

JELD-WEN - DOUBLE HUNG (ALTERNATE)

NEFER TO THP. NOTES ON DETAIL 1145.1


.

1<u>5</u>1

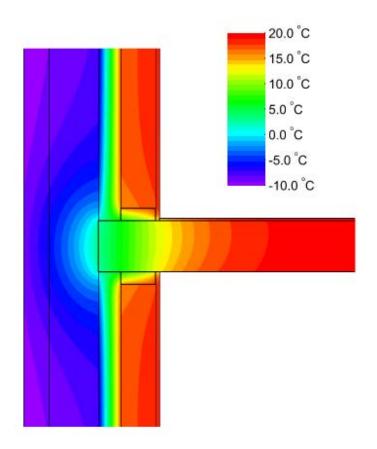

Jeld Wen Custom Wood **Double Hung**

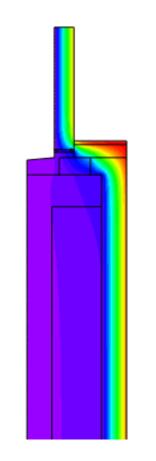

MATERIAL: WOOD (FSC) (SAPELE) COLOR: PTD PROFILE: TO MATCH EXISTING U-VALUE: 0.27 INFILTRATION: <0.3

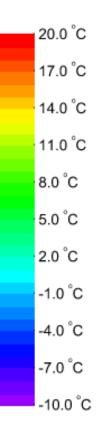
Marvin Ultimate Wood Double Hung

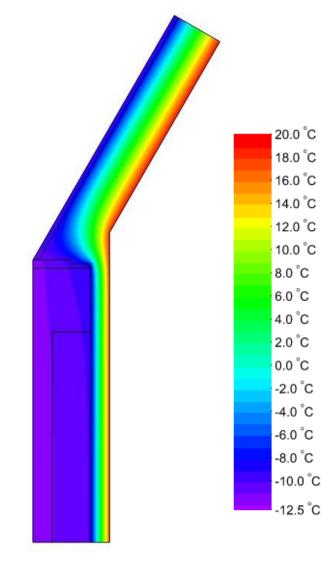
MATERIAL: WOOD (NOT FSC) (MAHOGANY COLOR: PTD PROFILE: TO MATCH EXISTING U-VALUE: <0.2 INFILTRATION: 0.03

ALPEN ZR-6 - CASEMENT (BASE)


Alpen Zenith ZR 6


Casement


RDH


MATERIAL: FIBERGLASS MATERIAL: FIBERGLASS COLOR: CUSTOM COLOR: CUSTOM PROFILE: TO MATCH EXISTING PROFILE: TO MATCH EXISTING U-VALUE: 0.2 U-VALUE: 0.2 INFILTRATION: <0.1 INFILTRATION: <0.1

Evolving Enclosure

Updated Design for EnerPHit

Component	Modified Stretch Code + EnerPHit Compliant Design
Above Grade Walls	R-32 (U-0.031) 4" CCSPF at interior face of brick
Below Grade Walls + Slab	R-32 (U-0.031)4" CCSPF at interior face of foundation
Roof	R-38 Split Insulation approach to achieve Prescriptive R-value
Windows	Simulated Double-Hung Tilt-Turn windows (U-0.18 max for worst case window, pending historic exception from Certifier).
Airtightness	+/- 0.1 cfm/ft ² 75 (~1.0 ACH50)
Ventilation	PHI-certified HRV/ERV
Heating & Cooling	Existing District Energy Systems
Lighting	All lighting controls automatic . All spaces with occupancy or vacancy sensors with override switches and dimming.
Appliance + Plug Load	At least 50% of installed receptacles shall be controlled via Automatic Receptacle control requirements.

1

Next Steps

- \rightarrow Design Stage Review in progress with Certifier
- \rightarrow Detailed mechanical design coordination with MEP Engineer
- ightarrow Brick testing ongoing
- \rightarrow Ongoing enclosure design coordination including thermal bridge evaluation and modelling
- ightarrow Construction scheduled for Spring, 2025

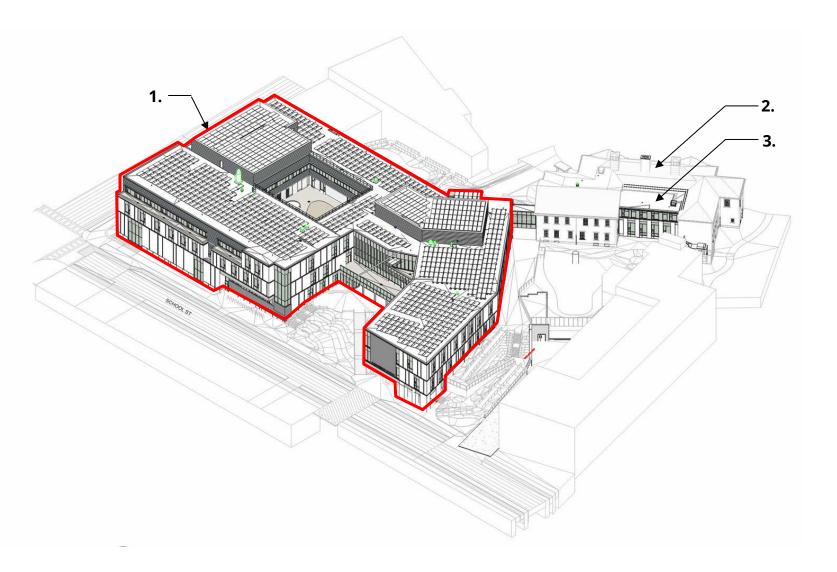
Conclusions

- \rightarrow Backstop requirements are similar to what EnerPHit component method requires.
- \rightarrow If achieving PH Certification is a goal, it's not a heavy lift beyond minimum code requirements.
- \rightarrow Potential for Phius Revive to make similar existing building considerations.
- → Use low U-value windows to achieve thermal comfort and minimize condensation risk, in addition to reducing the required amount of wall insulation, potentially satisfying multiple project considerations.
- ightarrow Passive House also encourages this.

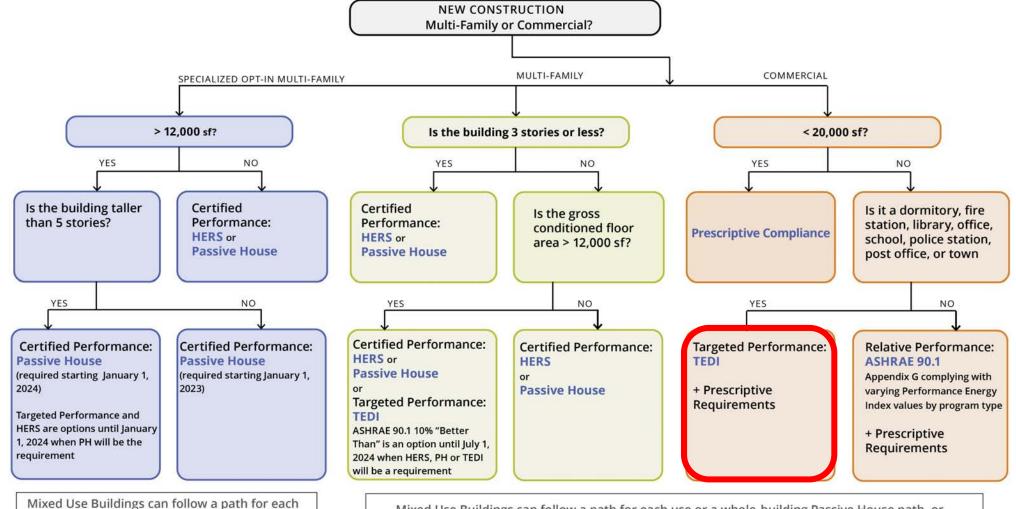
PH in Non-Residential New Construction

Pierce Elementary School, Brookline, MA

1. New Construction School (C-407.1)


- \rightarrow TEDI path with Enclosure Backstop (C402.1.5)
- →TEDI modeling may supersede requirements of the Enclosure Backstop

2. Existing Building Alteration (C-503)


→ Prescriptive derating for opaque assemblies
 being altered is preferred over Backstop as
 the plan is to leave existing windows
 (following backstop would mean replacing all
 the windows)

3. Existing Building Addition (C-502)

→ Following Enclosure Backstop, using same assemblies as the new construction school

Stretch + Specialized Opt-In Code

Mixed Use Buildings can follow a path for each use or a whole-building Passive House path, or TEDI + Prescriptive Requirements Path

RDH

use or a whole-building Passive House path

TEDI requirements

Schools larger than 125,000 sf:

 \rightarrow TEDI targets are more stringent than Passive House

→ Heating TEDI: 2.2 kbtu/sf/yr (7 kWh/m2a)

→ Cooling TEDI: 12 kbtu/sf/yr (38 kWh/m2a)

ightarrow Different from TEDI in BC or Toronto

→ Some elements modelled prescriptively (ie no credit for demand control ventilation)

Table C407.1.1.5 Thermal Energy Demand Intensity (TEDI) Limits Use Type Cooling TEDI Heating TEDI (kBtu/sf-vr) (kBtu/sf-yr) Office, fire station, library, police station, 1.5 23 post office, town hall >= 125,000-sf 4-0.00002 * Office, fire station, library, police station, 18 + 0.00004 * post office, town hall between 75,000 Area (sf) Area (sf) and 125,000-sf Office, fire station, library, police station, 2.5 21 post office, town hall <= 75,000-sf 2.2 K-12 School >= 125,000-sf 12 K-12 School between 75.000 and 2.7 - 0.00000432 - 0.00016 * 125.000-sf * Area (sf) Area (sf) K-12 School <= 75.000-sf 2.4 20 Residential multifamily and dormitory >= 2.8 22 125,000-sf Residential multifamily and dormitory 3.8 - 0.000008 4.5 + 0.00014 * between 75.000 and 125.000-sf * Area (sf) Area (sf) Residential multifamily and dormitory <= 3.2 15 75,000-sf

1.5

4-0.00002 *

Area (sf)

2.5

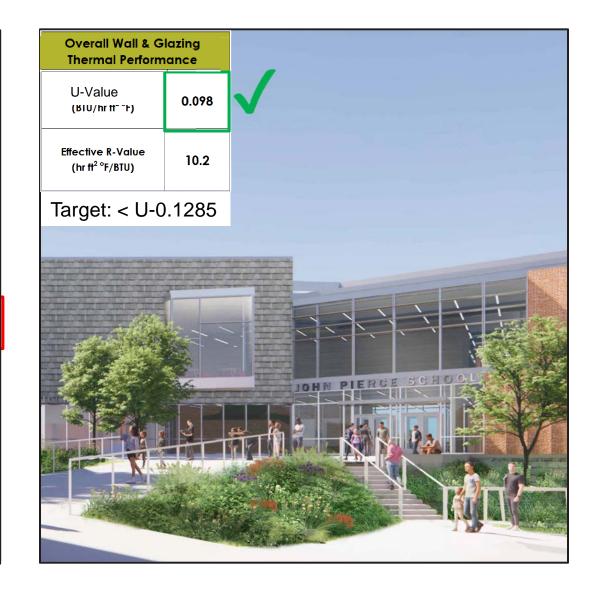
23

18 + 0.00004 *

Area (sf)

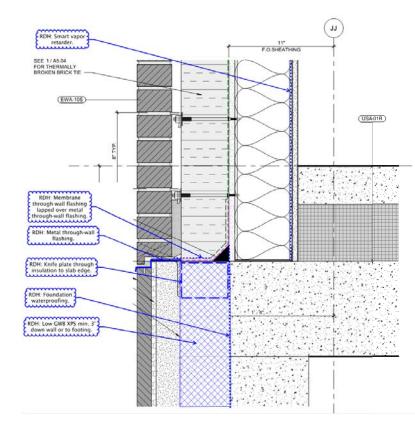
21

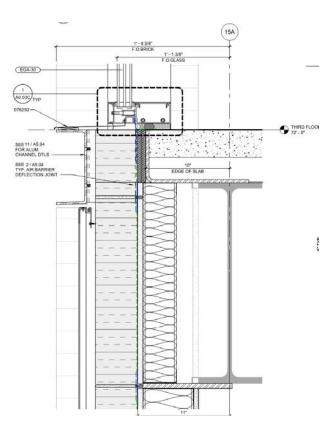
All other >= 125,000-sf

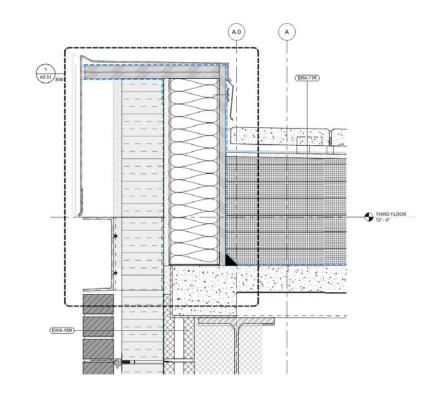

All other <= 75,000-sf

sf

All other between 75,000 and 125,0000-


Calculating Enclosure Thermal Performance


					Totals	7915.1	100%
Transmittance Description	Area, Length or Amount Takeoff	Units	Transmittance Value	Units	Source Reference	Heat Flow (BTU/hr°F)	%Total Heat Flow
Brick on CFMF	31461.00	ft²	0.037 (R-27)	BTU/ hr ft² °F	RDH Masonry Guide	1165.2	15%
Brick on CMU	3615.00	ft²	0.045 (R-22)	BTU/ hr ft² °F	RDH Masonry Guide	164.3	2%
Brick on Concrete	1525.00	ft²	0.045	BTU/ hr ft² °F	RDH Masonry Guide	69.3	1%
Slate/Granite shingle on CFMF backup	3804.00	ft²	0.037	BTU/ hr ft² °F	RDH Masonry Guide	140.9	2%
Standing seam/Metal Panel on CFMF	14267.00	ft²	0.037	BTU/ hr ft² °F	RDH Masonry Guide	528.4	7%
Slate shingle on CMU	1683.00	ft²	0.045	BTU/ hr ft² °F	RDH Masonry Guide	76.5	1%
Spandrels (large openings)	1494.00	ft²	0.168	BTU/ hr ft² °F	4.1.2	251.0	3%
Spandrels (small openings)	1040.00	ft²	0.168	BTU/ hr ft² °F	4.1.2	174.7	2%
Kawneer 1600-UT System 2 (large)	11169.00	ft²	0.190	BTU/ hr ft² °F	Kawneer Data	2122.1	27%
Kawneer 1600-UT System 2 (small)	7025.00	ft²	0.210	BTU/ hr ft² °F	Kawneer Data	1475.3	19%
Wood on CFMF	923.00	ft²	0.037	BTU/ hr ft² °F	RDH Masonry Guide	34.2	0%
Wood on CMU	531.00	ft²	0.045	BTU/ hr ft² °F	RDH Masonry Guide	24.1	0%
CMU Wall @ Garage Interface	2542.50	ft²	0.043	BTU/ hr ft² °F	RDH Masonry Guide	110.5	1%
Shelf angles/slab edge/intermediate floor	2186.00	ft	0.118	BTU/ hr ft °F	RDH DER TB Guide	257.9	3%
Window Perimeter	7757.00	ft	0.047	BTU/ hr ft °F	5.3.13	364.6	5%
Slab to Garage Transition	1286.77	ft	0.350	BTU/ hr ft °F	RDH DER TB Guide	450.4	6%
Wall to Roof Transition	1540.00	ft	0.210	BTU/ hr ft °F	RDH DER TB Guide	323.4	4%
Low parapet	867.47	ft	0.210	BTU/ hr ft °F	RDH DER TB Guide	182.2	2%



RDH

Assemblies

RDH

Reference Detail

Appendix A: Catalogue Material Data Sheets

Detail 5.3.13

RDH

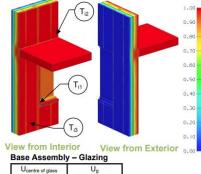
BUILDING ENVELOPE THERMAL BRIDGING GUIDE v1.6

Exterior and Interior Insulated 6" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly with Thermally Isolated Vertical Brackets and Rail System (24" o.c.) Supporting Metal Cladding and R-19 Batt Insulation in Stud Cavity – Triple Glazed Aluminum Curtain Wall & Intermediate Floor Intersection with Window Thermal Break Positioned in the Exterior Insulation

ID	Component	Thickness Inches (mm)	Conductivity Btu·in / ft ² ·hr·°F (W/m K)	Nominal Resistance hr-ft ^{2.} °F/Btu (m ² K/W)	Density Ib/ft ³ (kg/m ³)	Specific Heat Btu/lb·°F (J/kg K)
1	Interior Film ¹		-	R-0.6 to R-1.1 (0.11 RSI to 0.20 RSI)	-	-
2	Gypsum Board	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
3	6" x 1 5/8" Steel Studs (16" o.c.) with Top and Bottom Tracks	18 Gauge	430 (62)		489 (7830)	0.12 (500)
4	Fiberglas Batt Insulation	6" (152)	0.32 (0.046)	R-19 (3.35 RSI)	0.9 (1.1)	0.17 (710)
5	Exterior Sheathing	1/2" (13)	1.1 (0.16)	R-0.5 (0.08 RSI)	50 (800)	0.26 (1090)
6	Thermally Isolated Aluminum Bracket	0.09" (2.2)	1110 (160)		171 (2739)	0.21 (900)
7	Exterior Insulation	Varies	5 . 5	R-10 to R-25 (1.76 RSI to 4.40 RSI)	1.8 (28)	0.29 (1220)
8	Vertical Aluminum L-girt	0.09" (2.2)	1110 (160)		171 (2739)	0.21 (900)
9	Generic Cladding with 1/2"	(13mm) vented	air space is incorp	porated into exterior heat tra	ansfer coefficie	nt
10	5' (1.5m) x 4' (1.2m) Alum		II (Passive House 0.14 BTU/hr.ft ² .ºF	certified): triple glazed & th (0.81 W/m²K)	ermally broken	2,
11	Wood Liner	1/2" (13)	0.69 (0.10)	-	31 (500)	0.45 (1880)
12	Aluminum Flashing	14 Gauge	1110 (160)	-	171 (2739)	0.21 (900)
13	Concrete Floor Slab	8" (203)	12.5 (1.8)	-	140 (2250)	0.20 (850)
14	Exterior Film ¹			R-0.2 (0.03 RSI) to R-0.7 (0.12 RSI)	-	-

¹ Value selected from table 1, p. 26.1 of 2009 ASHRAE Handbook – Fundamentals depending on surface orientation ² The thermal conductivity of air spaces within framing was found using ISO 100077-2

Appendix B: Catalogue Thermal Data Sheets


Detail 5.3.13

Exterior and Interior Insulated 6" x 1 5/8" Steel Stud (16" o.c.) Wall Assembly

BUILDING ENVELOPE THERMAL BRIDGING GUIDE v1.6

with Thermally Isolated Vertical Brackets and Rail System (24" o.c.) Supporting Metal Cladding and R-19 Batt Insulation in Stud Cavity – Triple Glazed Aluminum Curtain Wall & Intermediate Floor Intersection with Window Thermal Break Positioned in the Exterior Insulation

Thermal Performance Indicators

Assembly 1D (Nominal) R-Value	R _{1D}	R-21.3 (3.75 RSI) + exterior insulation
Transmittance / Resistance without Anomaly	U _{w,} R _w , U _{g,}	"clear wall" U- and R-value: w = wall without intermediate floor g = glazing
Transmittance / Resistance	U _{floor,} R _{floor,} U _t , R _t	U and R-values for: floor = wall + intermediate floor t = combined wall + floor + window
Surface Temperature Index ¹	Ti	0 = exterior temperature 1 = interior temperature
Linear Transmittance	Ψ	Incremental increase in transmittance per linear length

 Btu/ft² ·hr ·°F (W/m² K)
 Btu/ft² ·hr ·°F (W/m² K)

 0.142 (0.81)
 0.199 (1.13)

¹Assumptions and limitations for surface temperatures identified in ASHRAE 1365-RP

Nominal (1D) vs. Assembly Performance Indicators

ase Assembly	- Steel Stud C	lear Wall	Intermediate Floor Linear Transmittance			
Exterior Insulation 1D R-Value (RSI)	R _{1D} ft²⋅hr.∘F / Btu (m² K / W)	R _w ft²⋅hr.∘F / Btu (m² K / W)	U _w Btu/ft² ⋅hr ⋅∘F (W/m² K)	R _{floor} ft²-hr.∘F / Btu (m² K / W)	U _{floor} Btu/ft² ⋅hr ⋅ºF (W/m² K)	Ψfloor Btu/ft ² ⋅hr ⋅°F (W/m ² K)
R-10 (1.76)	R-31.3 (5.51)	R-19.2 (3.38)	0.052 (0.30)	R-16.1 (2.83)	0.062 (0.35)	0.071 (0.122)
R-15 (2.64)	R-36.3 (6.39)	R-21.8 (3.83)	0.046 (0.26)	R-18.5 (3.26)	0.054 (0.31)	0.056 (0.098)
R-20 (3.52)	R-41.3 (7.28)	R-24.8 (4.37)	0.040 (0.23)	R-21.3 (3.75)	0.047 (0.27)	0.046 (0.080)
R-25 (4.40)	R-46.3 (8.15)	R-27.6 (4.86)	0.036 (0.21)	R-23.9 (4.21)	0.042 (0.24)	0.040 (0.068)

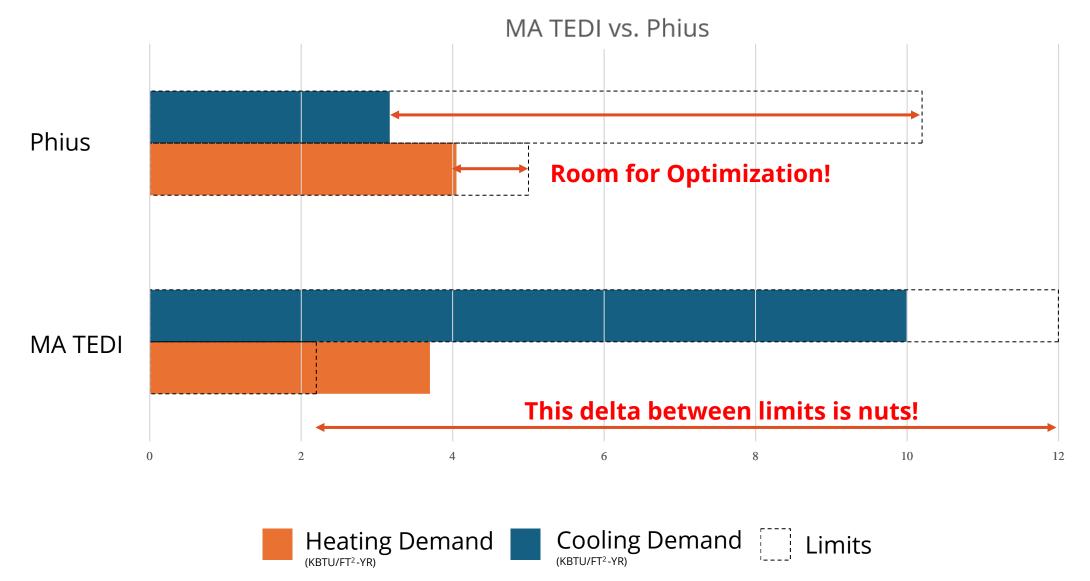
Window Transition Transmittance

Exterior Insulation 1D R-Value (RSI)	R _t ft²-hr.ºF / Btu (m² K / W)	Ut Btu/ft ² hr °F (W/m ² K)	Ψ _{Head} Btu/ft ⋅hr ⋅∘F (W/m K)	Ψ _{Sill} Btu/ft⊸hr⊸nF (W/m K)	Ψ _{Jamb} Btu/ft⊸hr⊸P (W/m K)	Ψ _{Total} Btu/ft ⋅hr ⋅ºF (W/m K)
R-10 (1.76)	R-8.1 (1.43)	0.123 (0.70)	0.036 (0.063)	0.028 (0.048)	0.046 (0.080)	0.042 (0.073)
R-15 (2.64)	R-9.1 (1.60)	0.110 (0.62)	0.040 (0.069)	0.031 (0.053)	0.047 (0.081)	0.043 (0.074)
R-20 (3.52)	R-9.9 (1.74)	0.101 (0.58)	0.044 (0.076)	0.033 (0.058)	0.048 (0.083)	0.047 (0.082)
R-25 (4.40)	R-10.5 (1.85)	0.095 (0.54)	0.048 (0.083)	0.033 (0.058)	0.047 (0.082)	0.050 (0.086)

Temperature Indices

	R10	R15	R20	R25	
Tit	0.76	0.76	0.76	0.75	Min T on window frame, at bottom corner at edge of glass
T _{i2}	0.76	0.79	0.82	0.84	Max T on interior surface of sheathing, along bottom track
T _{i3}	0.41	0.44	0.48	0.51	Min T on interior surface of sheathing, between studs

Failed TEDI vs. PH Model Inputs


Component	TEDI Model	Passive House
Above Grade Walls	R-22 to R-27 , cladding-dependent 6" Cavity mineral wool, 5" Exterior mineral wool	Same as TEDI Model
Below Grade Walls	R-25 5" XPS	Same as TEDI Model
Roof	R-50 10" Polyiso	Same as TEDI Model
Parking Garage Slab	R-30 6" Concrete with 6" XPS above	R-18 at gymnasium, R-30 elsewhere 3" XPS at gymnasium, 6" XPS elsewhere
Windows	~1.1 W/m2K whole-window Kawneer 1600 UT	Same as TEDI Model
Airtightness	0.08 cfm/ft2 (~0.45 ACH50)	Same as TEDI Model
Ventilation	~75,000 m3/h @ 75% heat & energy recovery (44,526 cfm, per MA TEDI Guidelines)	~88,000 m3/h @ 75% heat & energy recovery (51,650 cfm)
Heating & Cooling	Electric boiler & water-cooled chiller (per MA TEDI Guidelines)	GSHP w/ radiant panels & hydronic fan coils
Lighting	264,502 kWh/yr (per MA TEDI Guidelines)	Same as TEDI model
Appliance + Plug Load	463,690 kWh/yr (per MA TEDI Guidelines)	347,161 kWh/yr (per equipment schedules w/ ASHRAE usage patterns, and standard value per meal prepared)

TEDI vs. Passive House Results

	TEDI Target	TEDI Results*	Phius Targets	Phius Results			
Heating Demand (KBTU/FT ² -YR)	≤ 2.2	3.7	5	4.05			
Heating Load (BTU/HR-FT ²)	-	7.7	5.8	4.42			
Cooling Demand (KBTU/FT ² -YR)	≤ 12	10 🗸	10.2	3.17 🗸			
Cooling Load (BTU/HR-FT ²)	-	17.6	4.3	3.33 🗸			
Source Energy (KBTU/FT ² - YR)	-	32.1	30.35	24.06			
Airtightness (CFM/FT ² -75)	≤ 0.35	0.08 (assumed)	0.08	0.08 (assumed)			
TEDI Results are based on RDH's corrected version of the eQuest model originally provided by GGD. TEDI results based on MA Guidelines for "Default" method modeled in eQuest. Area-normalized metrics are calculated using iCFA in accordance with PHIUS requirements.							

Criteria based on PHIUS+ 2021 for Boston, MA .

TEDI vs. PH Model Results

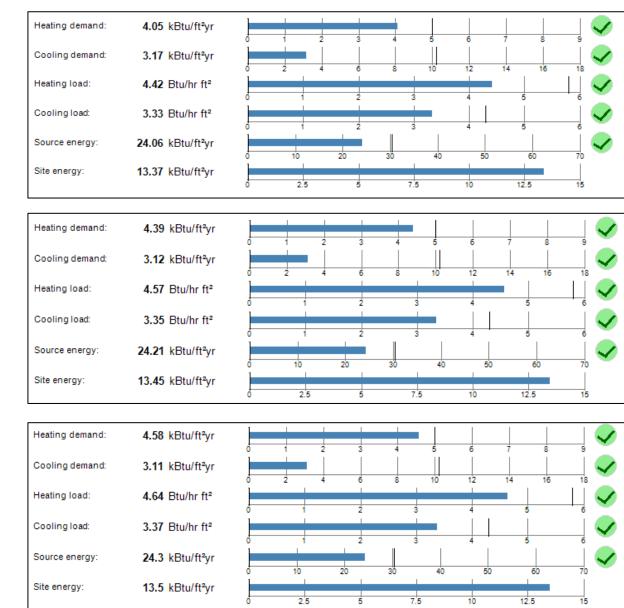
RDH

Passive House Optimization

Reduce under-slab insulation from 6" to 3"

OR

Increase the COG U-value from U-0.111 to U-0.14


 \rightarrow Opens possibility of more IGUs

OR

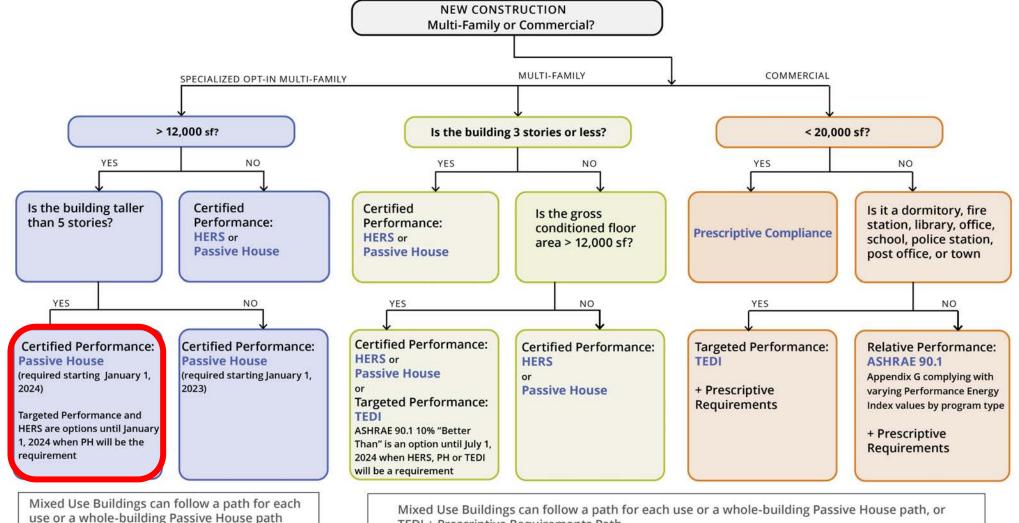
RDH

Reduce wall clear field R-value from ~R-26 to R-18

- → Remove stud cavity insulation and maintain 5" mineral wool outboard of sheathing OR
- → Keep stud cavity insulation and reduce to ~3" mineral wool outboard of sheathing

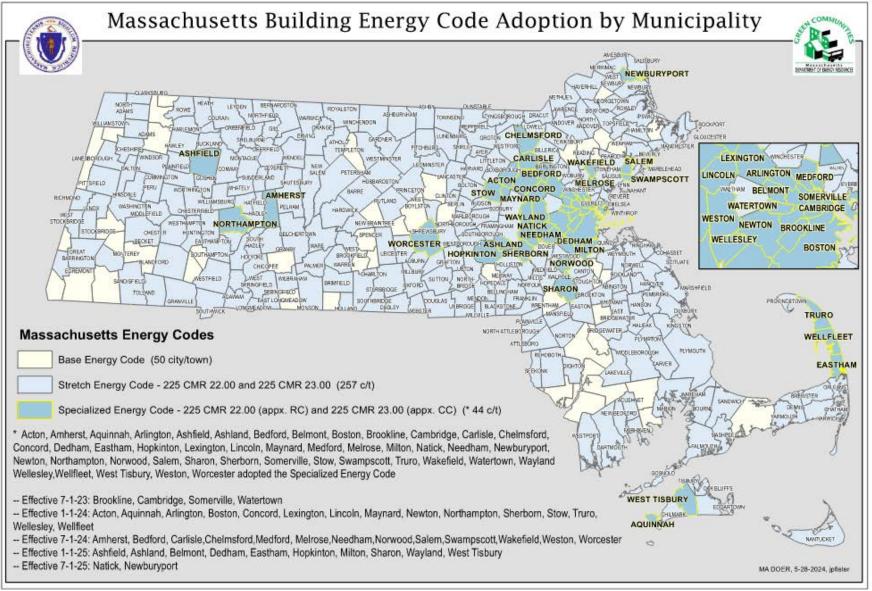
Next Steps

- \rightarrow Project is continuing with TEDI as a path forward with "As Designed" modeling.
- → Project team was already too far down the road on TEDI path to want to switch metrics and incur additional soft costs of PH consulting and Verification
- → Ideally the project would have started off targeting Passive House instead it is feasible and at this point a better defined, better proven and more familiar process


TEDI Conclusions

- \rightarrow TEDI modeling targets and guidelines need to be updated by DOER.
- \rightarrow Modeling per "Default" TEDI guidelines does not work.
- ightarrow First generation of projects is testing the system, and identifying the "bugs"
- \rightarrow PH is feasible for non-residential buildings including schools and allows optimization.
- → Consider Passive House Certification from the outset on projects where TEDI is the minimum code required path.

PH in Multi-family


Stretch + Specialized Opt-In Code

RDH

TEDI + Prescriptive Requirements Path

Massachusetts Stretch Code

RDH

Source: Massachusetts DOER

Bunker Hill Building M – Charlestown, MA

- \rightarrow Multi-family Residential
- → +/- 90,000 gsf
- ightarrow 102 units
- \rightarrow CLT Floors
- → CFMF Load Bearing Panelized Walls

Volpe Parcel R1, Cambridge

→ Multi-Family Residential Student

Housing

- \rightarrow 2 floors commercial program
- → +/- 200,000 gsf
- \rightarrow 212 units

600 Rivers Edge, Medford

- → Multi-family Residential
- → +/- 275,000 gsf
- ightarrow +/- 220 units
- → Terrace pool over above-grade first floor parking

78 Crafts Street, Newton

- → Multi-family Residential
- \rightarrow 4 buildings 4-6 stories
- → +/- 400,000 gsf
- \rightarrow Chapter 40B
 - ightarrow 20% at 50% AMI
- \rightarrow 307 units

Multi-family in Cambridge

→ Multi-family Residential
→ +/- 250,000 gsf

 \rightarrow +/- 250 units

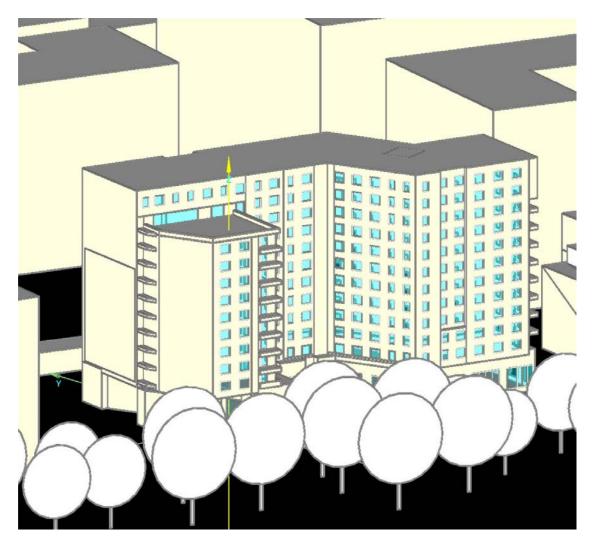

Multi-family in Cambridge

TABLE 1 WUFI®PASSIVE MODEL RESULTS*							
PHIUS Targets**	•	Current <u>Design</u> ***	Alt 1: 0.25 SHGC at South Elevations	Alt 2: 25% WWR + 0.3 SHGC for all glazing	Alt 3: 28% WWR + 0.3 SHGC for all glazing	Alt 4: 4" Wall Insulation	Alt 5: Direct Electric Water Heater
HEATING DEMAND KBTU/FT ² -YR	≤ 5.2	3.68	4.29	3.66	3.62	4.28	3.68
HEATING LOAD BTU/H-FT ²	≤ 4.4	2.88	3.04	2.89	2.92	3.12	2.88
COOLING DEMAND KBTU/FT ² -YR	≤ 8.2	1.44	1.32	1.54	1.66	1.42	2.72
COOLING LOAD BTU/H-FT ²	≤ 3.4	2.31	2.23	2.39	2.5	2.35	2.89
SOURCE ENERGY Based on 228 Dwelling Units and 294 Bedrooms	4,900 <u>kWh/</u> <u>occ</u>	3,972	4,055	4,148	4,160	4,064	4,512
AIRTIGHTNESS CFM/FT ² @ 75 pa	≤ <u>0.</u> 08	0.08 (assumed)	0.08 (assumed)	0.08 (assumed)	0.08 (assumed)	0.08 (assumed)	0.08 (assumed)

*Area-normalized metrics are calculated using iCFA in accordance with PHIUS requirements

**Criteria based on PHIUS+ 2021 for Boston, MA

***Current Design based upon documentation listed above and assumptions noted in Table 2

Mass Save Incentives (Carrot)

 \rightarrow Multi-Family Residential Buildings with 5+

Units

 \rightarrow Certification through PHI or Phius

Bunker Hill Example, 102 Units:

Feasibility: \$5,000 Energy Modeling: \$20,000 Pre-Certification: \$51,000 Certification: \$255,000 Total: \$331,000

Passive House Incentive Structure for Multi-Family (5 units or more)

Incentive Timing	Activity	Incentive Amount	Max. Incentive				
	Feasibility Study	Up to 100% of Feasibility costs	\$5,000				
Pre-Construction	Energy Modeling	75% of Energy Model cost	\$500/unit, max. \$20,000				
	Pre-Certification	\$500/unit	N/A				
	Certification	\$2,500/unit					
Post-Construction	Net Performance	\$0.75/kWh					
	Bonus	\$7.50/therm					
The Net Performance Bonus is calculated by determining the final pay for savings incentives and subtracting the pre- and final certification incentives. The result is the Net Performance Bonus.							

Projects that pre-certify but do not achieve certification are eligible for the pre-certification incentive and Net Performance Bonus.

Projects over 100 units must be pre-approved by the applicable Sponsors of Mass Save.

BERDO 2.0 (Stick)

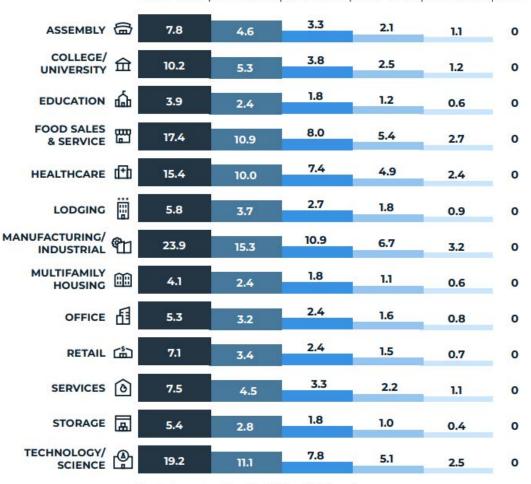
If a building is not complying:

 Make a Compliance Plan implemented the following year or

ightarrow Buy Renewable Energy

OR

→ Take alternate compliance path and pay \$234 / metric ton over limit


OR

→ Apply for Flexibility Measures that adjust the limit, make allowance for hardship, or allow blended emissions between program types in building or buildings in a portfolio.

Penalty Fees:

- \rightarrow \$150-\$300 / day failure to comply w reporting
- \rightarrow \$300-\$1,000 / day failure to comply w emission standards
- \rightarrow \$1,000-\$5,000 failure to accurately report information

USE THE CHART BELOW TO SEE YOUR EMISSION STANDARDS BY YEAR

2025 - 2029 2030 - 2034 2035 - 2039 2040 - 2044 2045 - 2049 2050 -

Emissions standard (kgCO2e/ft2/year)

Does PH Certification eventually go away?

BLOG POST

ASHRAE 227 Passive Building Standard Released for Public Comment

Phius Senior Scientist Graham Wright provides details on the release of ASHRAE Standard 227 - Passive

Building Design for public comment.

October 03, 2023 By Graham S. Wright

SHARE

f

y

in

M

View and Download ASHRAE 227P Draft

Click here to view and download the public review draft of ASHRAE Standard 227 - Passive Building Design.

RDH

Conclusions

- → Energy Codes and Building Science principles, like those made familiar by Passive House, are converging.
- → Passive House is a recognized absolute metric for operational energy reduction that can be used towards operational decarbonization.
- → Passive House has provided a framework for non-technically oriented people to discuss building science that improves buildings. This empowers building owners to make decisions.
- → Passive House is a viable code compliance option for existing or new construction buildings of varying program types.
- → In many cases PH is a preferable compliance path to meet the requirements of the Stretch Code, especially in the case of MA TEDI.
- \rightarrow OR...For Now....

JUST DO PH.

Thank You.

RDF Andrew Steingiser | asteingiser@rdh.com