Joseph Lstiburek, Ph.D. P.Eng, ASHRAE Fellow

Building Science

Adventures In Building Science

www.buildinascience.com

Build Tight - Ventilate Right

Building Science Corporation

Build Tight - Ventilate Right How Tight? What's Right?

Building Science Corporation

Joseph Lstiburek 3

Air Barrier Metrics

Material 0.02 l/(s-m2) @ 75 Pa

Assembly 0.20 l/(s-m2) @ 75 Pa

Enclosure 2.00 l/(s-m2) @ 75 Pa

0.35 cfm/ft2 @ 50 Pa

0.25 cfm/ft2 @ 50 Pa

0.15 cfm/ft2 @ 50 Pa

Building Science Corporation

Getting rid of big holes 3 ach@50
Getting rid of smaller holes 1.5 ach@50
Getting German 0.6 ach@50

Building Science Corporation

Joseph Lstiburek 5

Best

As Tight as Possible - with Balanced Ventilation
Energy Recovery
Distribution and Mixing
Source Control - Spot exhaust ventilation
Filtration
Material selection

Building Science Corporation

Worst

Leaky - with - Nothing

Spot Ventilation in Bathroom/Kitchen

Exhaust Ventilation - with - No Distribution and No Mixing

Building Science Corporation

Joseph Lstiburek 7

Three Types of Controlled Ventilation Systems

Exhaust Ventilation
Supply Ventilation
Balanced Ventilation

Building Science Corporation

Ventilation Rates Are Based on Odor Control

Building Science Corporation

Ventilation Rates Are Based on Odor Control Health Science Basis for Ventilation Rates is Extremely Limited

Building Science Corporation

Joseph Lstiburek 19

Ventilation Rates Are Based on Odor Control Health Science Basis for Ventilation Rates is Extremely Limited Almost Nothing Cited Applies to Housing

Building Science Corporation

Ventilation Rates Are Based on Odor Control Health Science Basis for Ventilation Rates is Extremely Limited

Almost Nothing Cited Applies to Housing
The Applicable Studies Focus on Dampness

Building Science Corporation

House

2,000 ft² 3 bedrooms

8 ft. ceiling

Volume: 16,000 ft³

.35 ach 93 cfm

.30 ach 80 cfm

.25 ach 67 cfm

.20 ach 53 cfm

.15 ach 40 cfm

Building Science Corporation

House

2,000 ft² 3 bedrooms 8 ft. ceiling

Volume: 16,000 ft³

Ventilation	Rates
-------------	-------

.35 ach	93 cfm	62 - 73	62 - 73 5 cfm/person		20 cfm
.30 ach	80 cfm		10 cfm/person		40 cfm
.25 ach	67 cfm	62 - 89	62 - 89 15 cfm/person		60 cfm
.20 ach	53 cfm		.35 ach	90 cfm	
.15 ach	40 cfm	62.2 - 2	62.2 - 2010 7.5 cfm/person		50 cfm
+ 0.01					
		62.2 - 2	62.2 - 2013 7.5 cfm/person		90 cfm
			+ 0.03		

Building Science Corporation

Joseph Lstiburek 25

Office

Occupant Density

15/1000 ft² (67 ft²/person) 62 - 89

15 cfm/person

5/1000 ft² (200 ft²/person) 62.1 - 2007

17 cfm/person

Correctional Facility Cell

Occupant Density

20/1000 ft² (48 ft²/person) 62.1 – 2007

10 cfm/person

C.P. Yaglou

Harvard School of Public Health 1936 1955

150 ft³ → 20 cfm/person

300 ft³ \longrightarrow 12 cfm/person

C.P. Yaglou

Harvard School of Public Health 1936

1955

150 ft³ → 20 cfm/person 18.75 ft² 106 occupants

300 ft³ \longrightarrow 12 cfm/person 37.5 ft² 53 occupants

Experiment

470 ft³ -> 59 ft²

200 ft 3 \longrightarrow 25 ft 2

 $100 \text{ ft}^3 \longrightarrow 12 \text{ ft}^2$

ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.03 cfm per square foot of conditioned area

Occupancy is deemed to be the number of bedrooms plus one

Building Science Corporation

- ASHRAE Standard 62.2 calls for 7.5 cfm per person plus 0.03 cfm per square foot of conditioned area
- Occupancy is deemed to be the number of bedrooms plus one
- Outcome is often bad part load humidity problems, dryness problems, energy problems

Building Science Corporation

Joseph Lstiburek 33

IRC 2015 and 2018 calls for 7.5 cfm per person plus 0.01 cfm per square foot of conditioned area

Occupancy is deemed to be the number of bedrooms plus one

Building Science Corporation

3 Bedroom House – 2,500 ft2 30 cfm plus 75 cfm 105 cfm

Building Science Corporation

Joseph Lstiburek 35

3 Bedroom House – 2,500 ft2 30 cfm plus 25 cfm 55 cfm

Building Science Corporation

The Cult of The Blower Door

Building Science Corporation

Blower Door Can't Get You The True ACH On A Short Term Basis – Hour, Day, Week

Building Science Corporation

Joseph Lstiburek 39

Don't Know Where The Holes Are
Don't Know The Type of Holes
Don't Know The Pressure Across The Holes

Building Science Corporation

Dilution Is Not The Solution To Indoor Pollution
Source Control

Building Science Corporation

Joseph Lstiburek 41

Dilution For People Source Control For The Building

Building Science Corporation

Recommended Range of Relative Humidity
Above 25 percent during winter
Below 70 percent during summer

Kitchen Exhaust Hoods

Building Science Corporation

Clothes Dryers

Building Science Corporation

Fireplaces

Building Science Corporation

Approaches

Building Science Corporation

