Unvented Roof Research: Background

Ventilated Attics—Best Choice
- Roof sheathing dries to ventilated attic-moisture safe
- Interior moisture (air leaks) ventilated away in winter
- Air sealing at ceiling critical for best performance (e.g., spray foam air barrier, detail with sealant)

Then Why Unvented Roofs?
- Living space built into roof
- Vented cathedral assemblies—often poor performance
- Complicated rooflines, hip geometries—how to vent?
- Unworkable air barrier at ceiling line
- Blown-in rain (coastal)
- Hurricane tear-off
- HVAC in vented attic
Ducts in unconditioned attic = huge energy losses
- Industry reluctant to move ducts out of attic
- Ice dam issues due to duct losses

Solution: bring ducts into conditioned space
- Unvented/conditioned attic—keeps ductwork in conditioned space, duct leak issues eliminated

Fibrous Insulation Unvented Roofs
- Dense pack insulation of unvented roofs common in cold-climate retrofits
 - Moisture risks (see BSI-043 "Don't Be Dense—Cellulose and Dense-Pack Insulation")—2 in 10 failure?
 - Violates I-codes (see IRC § R806.4)
 - "Ridge rot"—localized problems (SIPS same problem)

Why Unvented + Fibrous Risky?
- Different than walls?
- Moisture risks at sheathing
 - Interior-sourced air leakage
 - Vapor contributing too?
 - Zero-perm exterior ("wrong side perfect vapor barrier")
 - Night sky radiation cooling
 - Stack effect in winter
 - "Ridge rot" (thermal and moisture buoyancy)

Why Unvented + Loose Fill Risky?
- Risk reduced by:
 - Airtightness of ceiling
 - Dense insulations-less airflow
 - Solar drive
 - But white roofs, shading
 - Lower interior RH (winter)
 - Why many of them work?
 - Lower permeance interior
 - Assumes good airtightness—vapor retarder not bypassed
 - Moisture accumulation: what gets in vs. gets out
Spray Foam/Exterior Insulation Roofs

- 2006 IRC: R806.4 Unvented attic assemblies
- Minimum R-value of “air impermeable insulation”
 - Not ratio of R-values… don’t get me started…
- Nail base needed with rigid foam on roof deck

Why Fibrous Fill Unvented Roofs?

- Unvented roofs without spray/board foams could reduce costs and increase market penetration… IF moisture damage risks are addressed
- Retrofit opportunities (existing uninsulated living space at roof line, without removing finishes)

Chicago Experiment

Experimental Design

- Seven roof bays (east-west pairs) in test garage attic in Chicago, IL (5A) area
- 72 F/50% RH interior conditions through winter: stressing assemblies to failure
Experimental Design

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Venting</th>
<th>Insulation</th>
<th>Interior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vented</td>
<td>Vented space</td>
<td>Fiberglass</td>
<td>Gypsum Bd</td>
</tr>
<tr>
<td>2</td>
<td>Top Vent Cathedral-Cellulose</td>
<td>Cedar Breather (1")</td>
<td>Cellulose</td>
<td>Gypsum Bd</td>
</tr>
<tr>
<td>3</td>
<td>Top Vent Cathedralized-Cellulose</td>
<td>Cedar Breather (1/2")</td>
<td>Cellulose</td>
<td>Open</td>
</tr>
<tr>
<td>4</td>
<td>Top Vent Cathedralized-FG</td>
<td>Cedar Breather (1")</td>
<td>Fiberglass</td>
<td>Open</td>
</tr>
<tr>
<td>5</td>
<td>Top Vent Cathedral-FG</td>
<td>Cedar Breather (1")</td>
<td>Fiberglass</td>
<td>Gypsum Bd</td>
</tr>
<tr>
<td>6</td>
<td>Diffusion Vent Cellulose</td>
<td>Diffusion Vent</td>
<td>Cellulose</td>
<td>Gypsum Bd</td>
</tr>
<tr>
<td>7</td>
<td>Unvented Cellulose</td>
<td>None</td>
<td>Cellulose</td>
<td>Gypsum Bd</td>
</tr>
</tbody>
</table>

- All assemblies vapor open inside
 - Latex paint on GWB or no GWB

Monitoring Result Takeaways

- Vented roof=great performance—even @50% RH!
- Unvented cellulose assembly driven to failure (high RHs, high sheathing MCs, condensation)
- Cellulose + diffusion vent helps, but not enough
- Top venting not enough to save roofs in:
 - Zone 5A climate, 50% RH interior
 - With a small (~1/2" vent space)
 - With OSB sheathing
- In top vent roofs, fiberglass roof much worse than cellulose
Chicago Experiment Conclusions

- No roof except for “control” vented roof showed “safe” performance in Zone 5A @ 50% RH
- Cellulose roofs generally showed lower MCs than fiberglass roofs, less damage to structure
- “Top vent” configuration not effective
 - OSB too restrictive for diffusion drying, even with outward thermal gradient? (part of the time)
 - Ventilation space too small?
- Diffusion vent: “helpful, but not enough”
 - Allowed greater drying than conventional unvented
 - But still higher MCs than generally considered safe

1990’s Cathedralized Roofs-Houston

- Even in Houston (CZ 2A), had moisture at ridge
- Concentrated only at ridge—rest of roof OK
- Similar problems in Jacksonville FL (CZ 2A)
- No interior air/vapor control (not practical)
- How about letting the moisture out at ridge?
Houston/Orlando Results

- Diffusion vent avoids wintertime ridge accumulation problems (ridge peak RHs/MCs)
- No failures at low interior RH, bigger difference at higher RH (interior humidification)
- Airtightness disappointing in some cases—no SPF

Cut & Cobble Unvented Roof (Diffusion Vent)
Monitoring Results

- Not ideal experiment (with & w/o DV comparison)
 - (Trying to fix friends’ houses, not rot them)
- Still worrying high wood MCs ~30% peaks
- Peaks occur in spring (May), not winter—???
- What goes in vs. what comes out
 - In via air leakage/out via vapor diffusion—hard
- Airtightness was ~6 ACH 50; air leaks to roof evident
- Trapped moisture—foil-faced polyiso below?
- Small diffusion vent surface area
- Return trip in spring 2016

Variable-Perm Membrane Unvented Roof

- Roof assembly:
 - Gypsum board, strapping
 - Intello plus membrane
 - 14” dense packed I joist
 - 3/4 AdvanTech (OSB)
 - Grace Ice and Water HT
 - Standing seam galvalume roof nailed thru sheathing

TJI MCs:
- Inboard
- Middle
- Outboard
DIBt/475 Guidance on “Hot Roofs”

- Vapor variable permeance membrane on interior side of roof assembly
- Testing of airtightness
- Low MCs when closed (construction moisture)
- No permanent shading (e.g., solar panels)
- No sustained high interior RH
- Dark roof membrane ($\alpha > 0.80$)

I trust PassivHaus and other 1 ACH 50 builders with this idea, but…

Further Research

- Ideal experiment: build hundreds, and see if/how many fail! $\(_(,)_{(,)}\$ [sarcasm]
- Further Building America research in CZ 5A
 - Includes variable-permeability interior vapor retarders, with and without ridge diffusion vent
 - First winter low interior RH
 - Second winter high interior RH
 - Third winter add controlled interior air leakage

Document Resources

- Building Science Digest 149: Unvented Roof Assemblies for All Climates
- Building Science Insight 043: Don't Be Dense—Cellulose and Dense-Pack Insulation
- Building Science Insight 088: Venting Vapor
- Building America Report 1511: Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting
- Building America Report 1409: Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates
- Building America Report 1001: Moisture-Safe Unvented Wood Roof Systems
- Building America Report 1308: Moisture Control for Dense-Packed Roof Assemblies in Cold Climates: Final Measure Guideline
- INTELLO & DB+ Approved by DIBt for Use in Unvented Hot Roof Assemblies

Questions?

Kohta Ueno
kohta [at] buildingscience [dot] com