### Rain Control 1

John Straube

# **Rain and Driving Rain**

- Climate effects
- Getting rain from the clouds to the building

### Outline

- Driving Rain load (and wind)
- Penetration forces
- Risk, expectation exposure
- Rain Control Strategies
- Flashing & Details
- Window door openings
- Curtainwalls, precast





## **Controlling Driving Rain Penetration**

- Understand driving rain to control it
  - Result of wind and rain
  - Building shape and height affects it
  - Enclosure design choices















# Driving Rain in Free Wind

- · Based on
  - terminal raindrop velocity
  - Raindrop size vs rainfall intensity

Driving rain through vertical plane r.,

$$r_v = V_{wind} / V_{d,t} \cdot r_h$$
  
 $r_{bv} = DRF \cdot r_h \cdot V_{wind}$ 

#### DRF, Driving Rain Factor

- Calculated factor for raindrops size, Vwind /Vdt
- Annual average DRF is about 0.2
  - Ranges from 0.18 to 0.25 depending on climate



























#### **Simple Prediction**

• Driving rain on a vertical building surface  $r_{bv}$  $r_{bv}$  =  $V_{wind}$  / $V_{d,t}$  · RDF ·  $r_h$ 

$$r_{bv} = DRF \cdot RDF \cdot r_h \cdot V_{wind}$$

- RDF, Rain Deposition Factor:
  - Empirical factor
  - converts free wind to rain on building
  - accounts for airflow around building

















| Assessing Risk                    |                                                                                                                                                          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk                              | Relationship to Rain-Penetration Problems                                                                                                                |
| Rainfall                          | As the amount of rainfall increases, the risk increases                                                                                                  |
| Exposure                          | As the exposure to rainfall increases, the risk increases                                                                                                |
| Shape and Surface                 | As shape and surface features increase rain deflection and shedding respectively, the risk decreases                                                     |
| Water Penetration<br>Resistance   | As the water penetration resistance of the assembly increases, the risk decreases                                                                        |
| Moisture Tolerance of<br>Assembly | As the moisture tolerance of the materials that comprise<br>the assembly increases (e.g., masonry and concrete vs.<br>wood and steel) the risk decreases |
| Drying Potential                  | As the ability of an assembly to dry increases due to the climate, design, or both, the risk decreases                                                   |
| Workmanship                       | As craftsmanship, inspection, & testing of the construction quality increases, risk decreases                                                            |



# **Rain Control Philosophy**

- The Three D's
  - Deflection
  - Drainage/Exclusion/Storage
  - Drying

## **Controlling Rain Penetration**

- Deflection
  - reduce water on building
  - Shed and redirect water away
  - slope surfaces, use exposed flashing/drips
- Drainage / Exclusion / Storage
  - enclosure design
  - provide drainage, or storage or barrier
- Drying
  - allow any remaining water to dry



# Shedding: Surface Drainage

- Surface Drainage Accumulates on Tall Buildings
- Redistribute and Control via
  - Drips
  - Overhangs
- Protect Windows, Saddles, etc.

If it doesn't get wet, it won't leak

J. Straube 2002































































# Water Penetration Forces www.BuildingScience.com

# Why do enclosures leak?

- 1. Gravity (downhill through holes)
- 2. Capillarity (small gaps)
- 3. Air pressure assists through large holes
- 4. Kinetic energy (for direct entry)
- Gravity and capillarity most situations
- Capillarity misunderstood
- Gravity ignored / wishful thinking

Direct Energy

Rain droplets can be carried through a wall by their own momentum

www.BuildingScience.com





# Gravity

- Hydrostatic
- 1" w.c. = 250 Pascals

























#### Wind Pressure

P<sub>stag</sub> = ½ ρ V<sup>2</sup>.
 Where P<sub>stag</sub> is the stagnation pressure [Pa or psf]
 ρ is the air density [N/m³ or pounds/ft³] and
 V is the air speed [m/s or mph].

ASCE 7-05 recommends the following:

P<sub>stag</sub> = k·V<sup>2</sup>
 Where k=0.00256 [psf] or k=0.613 [Pa].















## **Penetration Forces Summary**

- Gravity is a large force
  - 1000 Pa per 100 mm
  - Drainage relieves and redirects this pressure
- Capillarity can be a large force
  - ->750 Pa for 0.1 mm crack (important)
  - < 10 Pa for >3 mm crack (i.e.unimportant)
- Air pressure is usually a small force
  - Typically 10 to 100 Pa
  - 1 *second* in 10 years: > 1000 Pa



## **Enclosure Strategies**

www.BuildingScience.com

#### Rain Control

- Next to structure, the most important, fundamental requirement
- Source of many serious building problems
- Major impact on durability
- Low-energy buildings & rain
  - Different enclosure assemblies
  - Reduced drying ability= need for better control!

www.BuildingScience.com

## **Enclosure Wall Strategies**

- Some water is likely on the wall
- Water can penetrate in many ways

Once rain is on the wall ...

- Drainage
- Exclusion
- -Storage































# How big should gap be?

- Big question!
- For Drainage
  - only a small gap needed
  - E.g. 1/32", DrainWrap, two sheets building paper
- For Ventilation
  - Larger gaps, likely ¼ to ¾" (6-20 mm)
  - Vent openings important
  - How much ventilation do you need?

















# How much Ventilation do you need

- Are you drying the cladding back?
- Are you drying the wall sheathing?
- Are you controlling inward vapor drives?
- Are materials adjoining the ventilation cavity moisture sensitive?

















# Air-Water-Vapor

- Often thin layers
- Can be
  - 1. Water control (vapor permeable, not airtight), or
  - 2. Air & water control (vapor permeable), or
  - 3. Air, water & vapor (vapor impermeable).
- Examples
  - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick



















# Which Strategy to Use?

- Depends on Exposure to Rain
- Which depends on
  - Climate
  - Height of building
  - Orientation
  - Shape
  - Surface Features
  - Complexity

John Straube



- •Rain control strategies are often mixed
- •Should be done with intent and consideration of exposure

149

Details required at
1. Changes in plane
2. Changes in material
3. Changes in system / trade

Thus penetration, windows, rails, signs etc.

# Examples

 Roofs and basements also are categorized as mass, perfect barrier and drained

