

Pre-WWII Buildings

- No added insulation (or very little)
- Heating systems and some natural ventilation
- No air conditioning
- No vapor barriers
- Few explicit air-tightening or "draft-stopping" details
- Masonry and old-growth solid timber structures
- Plaster is the dominant interior finish

Building Science.com

11

Five Fundamental Changes

- 1. Increasing Thermal Resistance
- 2. Changing Permeance of Enclosure Linings
- 3. Water/Mold Sensitivity of Materials
- 4. Moisture Storage Capacity
- 5. 3-D Airflow Networks

Building Science.com

Soli

Building Science.com 17

Pre-WWII Buildings

- No added insulation (or very little)
- Heating systems and some natural ventilation
- No air conditioning
- No vapor barriers
- Few explicit air-tightening or "draft-stopping" details
- Masonry and old-growth solid timber structures
- Plaster is the dominant interior finish

Building Science.com

m

Five Fundamental Changes

- 1. Increasing Thermal Resistance
- 2. Changing Permeance of Enclosure Linings
- 3. Water/Mold Sensitivity of Materials
- 4. Moisture Storage Capacity
- 5. 3-D Airflow Networks

Building Science.com

Changes ...

- Expectations are rising
 - Faster design and construction
 - Lower risk of delays / cost over runs
 - Lower operating costs
 - less energy consumption (same cost?)
 - more comfort and IAQ
- In short ...

better buildings at less total cost

Measuring Performance • Performance metrics - Beauty - Awards - On-time - Utility - On budget - Green, LEED - Healthy - Productive - Operating costs - Operational energy use

7 of 40

Why such poor performance?

- Not enough insulation
 - Thermal bridges
- Not enough solar control
 - Windows!
- Too much ventilation
 - And/or poor control of
- Too many complex systems
 - HVAC no one understands

Beware Unintended consequences

- · Improving enclosure changes things
- Less heat gain
 - = change in AC performance
- · Less heat flow
 - = more condensation
- More airtightness
 - = better ventilation control required

Complexity

- Modern buildings and systems are complex
 - Good design must manage complexity
 - Allows for focus on the big things
 - e.g., program, massing, quality
- Enclosure and HVAC can be made simpler and more robust by early design-stage decisions

www.BuildingScience.com

New Solutions

- Step change in performance required
- Different approach to design& construction
 - Target, predict, measure performance
 - Quality assurance/control in drawings, on site
- Different assemblies and systems
 - More robust of operational/construction errors
 - Less complex, easier to manage

Prescription of High Performance

- Good skin
 - Rain, air, heat, vapor control
 - Simple to understand/analyze assemblies
- Good HVAC
 - Control temperature, RH, Fresh air seperately
 - Simple to understand/analyze systems
- Good design
 - Daylight, view, program, enjoyment
 - Assume future changes will occur

Top Ten List

Commercial and institutional mid-size buildings, Zone 5-7 climates

- Limit window-to-wall ratio (WWR) to the range of 20-40%, 50% with ultra-performance windows
- Increase window performance (lowest U-value affordable in cold climates, including frame effects)
- Increase wall/roof insulation (esp. by controlling thermal bridging) and airtighten
- · Separate ventilation air supply from heating and cooling.
- Use occupancy and daylighting controls for lights and equipment
- · Reduce equipment/plug & lighting power densities
- Don't over ventilate, use heat recovery & demand controlled ventilation
- Improve boiler and chiller efficiency & recover waste heat (eg IT rooms!)
- Use variable speed controls for all large pumps and fans and implement low temperature hydronic heating and cooling where appropriate.
- Use a simple and compact building form, oriented to the sun, with a depth that allows daylight harvesting.

Enclosures in Context

- Enclosures are key to comfort and durability
- Enclosures reduce space heating/cooling
 - and help with lighting, ventilation
- We still need energy for other things
 - Lights, appliances, computers, elevators, etc
- But
 - Bad enclosures ruin good HVAC
 - Bad HVAC can ruin good enclosures

www.BuildingScience.com

This seminar

- Enclosure
- HVAC (afternoon)

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science

Enclosures No. 46 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- · 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people
- Distribution a building function

Functional Layers

SUPPORT
CONTROL
PRISH

Functional Layers

Building Science

Basic Enclosure Functions

- Support
 - Resist & transfer physical forces from inside and out
 - Lateral (wind, earthquake)
 - · Gravity (snow, dead, use)
 - · Rheological (shrink, swell)
 - · Impact, wear, abrasion
- Control
 - Control mass and energy flows
- Finish
 - Interior and exterior surfaces for people

Functional Layers

Building Science

Enclosures No. 49 /

Basic Enclosure Functions

- Support
 - Resist & transfer physical forces from inside and out
- Control
 - Control mass and energy flows
 - Rain (and soil moisture)
 - Drainage plane, capillary break, etc.
 - Air
 - Continuous air barrier
 - Heat
 - Continuous layer of insulation
 - Vapor
 - Balance of wetting/drying
- Finish
 - Interior and exterior surfaces for people

Building Science.com

Enclosures No. 50 /

Basic Enclosure Functions Support Resist & transfer physical forces from inside and out Control Control Control Functional Layers Functional Layers Functional Layers Functional Layers Functional Layers Functional Layers Patterior & exterior surfaces for people Color, speculance Pattern, texture

History of Control Functions

- Older Buildings
 - One layer does everything
- Newer Building
 - Separate layers,
 - ... separate functions

Building Science.com

No. 53

What is a high performance enclosure?

- High levels of control
- But, poor continuity limits performance
- & Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- Thus: continuity + high levels of control

www.BuildingScience.com

Continuity is key!

- Must ensure no rain leaks, no holes
- Airflow control should be as continuous as practical
- Thermal control
 - We live with penetrations
 - Minimize steel &concrete to small local points
- Vapor control
 - Not that important to ensure continuity

www.BuildingScience.com

Next Steps

- Rain Control
- Air Control
- Thermal Control

Energy

Drained Drained systems preferred Account for joints and penetrations as well as installation defects and material failure

Building Science.com

Windows and Doors

- All penetrations should be drained, regardless of the approach taken to the element
- Windows and doors are the most critical openings to drain
- Rough opening must be drained

Leaky windows

• Studs and sheathing are sensitive to leaks

Air-Water-Vapor

- Often thin layers
- Can be
 - 1. Water control (vapor permeable, not airtight), or
 - 2. Air & water control (vapor permeable), or
 - 3. Air, water & vapor (vapor impermeable).
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

www.BuildingScience.com

Air-Water Control Layers

Sloped and complex surfaces demand very high performance

2. Airflow control

- Airtightness critical for all climates
 - Control condensation (summer and winter) and energy waste
- Airflow Control Layer
 - Practically, an air barrier system
- Cant be TOO tight
 - But must provide ventilation

113/175

Airtightness

- Materials not important, system is
- GSA and Army Corp requiring testing to tightness targets now
 - 0.40 and 0.25 cfm/sf@75 Pa respectively
- IECC/IRC likely to require soon
 - Measured at 50 Pa in houses

Building Science.com

1

3. Thermal control

- Ensure Comfort
 - Avoid hot/cold interior surfaces
- Warms surfaces = durability
 - Avoids condensation in hot and cold weather
 - hence, a durability and health strategy
 - Keep structure warm and dry and stable
- Save Energy
 - Reduce heat flow

11-11-08

Thermal Control

- · Insulation (conduction)
 - Slows heat flow in and out
- · Windows (conduction, radiation)
 - Slow heat flow in and out
 - Control solar gain : allow or reject?
- · "cool" roofs
 - Reduce solar gain
- Radiant barriers

Insulation

- · How much? Use much more than normal practise
- Comfort & condensation resistance:
 - True R5-10 is usually enough, but
- · For energy / environment:
 - "As much as practical", eg R10-R20
- Practical constraints likely the limit
 - How much space available in studs?
 - Fastening, windows: exterior sheathing of 1.5"/4"
- Increased insulation should reduce HVAC capital as well as operating!

Thermal Continuity / Thermal Bridges

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few bridges
- Major offenders / weak spots
 - Penetrating slabs (<R1)</p>
 - Steel studs (<<R1)
 - Windows (R2-R3)
- *Product* of **Area** and **U-value** defines significance to energy and condensation

www.BuildingScience.com

Thermal Bridge Examples • Aluminum framed • Balconies, Exposed slab edges

Conclusions

- Continuous drainage and rain control layer
- Continuous air control layer (air barrier)
- Continous thermal control layer
 - Limit the thermal bridges