

Igloo Design Air Cavity Ventilation - Walls Air Leakages in Buildings

Why need WUFI for Igloo Design ?

Achilles Karagiozis Global Director Building Science, Sustainability **Owens Corning**

- Mikael Salonvaara
- Marco Schönaich
- Florian Antretter
- Ben Arens

Fraunhofer _{Institut} Bauphysik

- Sept. 2012-Launch of new "Passive House Dynamic Tool" WUFI-Passive by PHIUS-Fraunhofer-Owens Corning
- Impressive Tool by all means (3-D, Comfort, Equipment)
- Joe "A key Note" speaker at Conference
- Joes first words "Achilles...You Don't need WUFI to design an Igloo"
- Everyone stops breathing !!!
- It is obvious.... Need to educate..

2000

 Experimental work determining quasi-steady state interstitial air pressures and leakage regimes could be coupled with enhanced heat, air and moisture (HAM) analytical models enhancing the predictability and accuracy of the analytical models. Linking a network model such as CONTAM96 with a moisture model such as WUFFI or MOIST should be possible. CONTAM96 could be modified to contain a numeric module for apportioning leakage areas (as previously described) and also be configured to address interstitial air pressure fields. In this manner CONTAM96 could be used to provide the inputs of leakage areas and pressures to WUFFI or MOIST.

WUFFI

Value Proposition: WUFI needed for Design IGLOO

Crashed in Alaska – How can I survive the cold? Answers with **WUFI®Plus**...

Simulation of an IGLOO with WUFI®Plus

General:

- Floor has to have an inclination to build up an elevated sleeping place and to secure that cold streams going out
- Entrance area is lowered
- Ice boards on the top of the Igloo are a possibility to make some light come in. 0.3 m²
- Arc radius: 2m
- Thickness of walls: 0.6 m ???

WUFI Plus

Ice skylight to meet Joe's preference

Joe the customer is Demanding

Granite – **NO** Kitchen – **NO** Plasma TV- **NO**

Location 1: Fairbanks

Physics of snow and ice

Material	Density [kg/m³]	Thermal conductivity [W/m K]	Heat capacaty [j/kg K]	Enthalpies [kJ/kg]	Porosit y [-]
Air	1.293	0.0247	1		
Snow	30-800	(rho200)=0.1	2016 (T0)	335 (fusion)	
Ice	800-900	(0.8-)2.5	2016 (T0)	2945 (subl.)	
Water	1000	0.6	4184	2520 (vap.)	

Albedo-values of snow: from 0.2 (dirty) up to 0.9 → average = 0.8-0.9
 → Most of the melting energy comes from the short wave radiation (Albedo important factor for melting)!

Snow reflects short wave radiation (90%) but absorbs long wave radiation(ϵ =0.01) \rightarrow snow radiates like black body with a maximum amount of energy (316 W/m²) according to max temperature of 273° Kelvin (10µm) \rightarrow Infrared window (8-13µm) \rightarrow snow can cool down during night time

- http://www.wau.boku.ac.at/uploads/media/SchneePhysik_02.pdf
- <u>http://nsidc.org/cryosphere/seaice/processes/albedo.html</u>
- http://www.slf.ch/ueber/organisation/schnee_permafrost/schneephysik/projekte/index_EN

Main layer:

- 2 layers:
 - 0.1m fresh fallen snow → λ = 0.8 W/mK
 → After the first day of snowing
 - 0.5m old snow $\rightarrow \lambda = 0.12$ W/mK \rightarrow cut out snow blocks
 - 0.03m ice layer $\rightarrow \lambda = 1.6$ W/mK
 - \rightarrow after the first heating of the indoor

Phase Change Capability

dit material data	a the fact of									X
Name										
KLH Massivholz										
Basic values			onal data							
Bulk density [kg/m³] 100		Moisture storage function					360000			
Porosity [-]	0.6	Liquid transport coefficient, succion								
Specific heat capacity [J/kgK] 2106		Thermal conductivity, moisture-dependent Thermal conductivity, temperature-dependent					300000		+-/-+	
Thermal conductivity [W/mK]	Wat	Water vapour diffusion resistance factor, moisture-dependent								
Water vapour diffusion resistance factor [-] 300							§ 240000		++-+	
Additional data			Temperature	Enthalpy			I dana			
Typical built-in moisture [kg/m ³]	60	NO.	[°C]	[J/kg]						
Thermal conductivity supplement [%/M%]	1.3	1	-2	2108	-	New New	ific		/	
Color		2	-1	4216	Ξ	🔏 Delete	120000 –			
		3	-0.75	15211.75		🗎 Сору	<i>"</i>	/		
		4	-0.5	47145		强 Insert	60000		+ +	
		5	-0.25	100015.75		New/Insert:				
		6	0	174342		after 🔹	-2	-1	0 1	2
		7	0.25	248668.25	-			Tempe	erature [°C]	
Save in database							ОК	Cancel		Help

Indoor climate in the empty Igloo...???

Too cold!

-20

-40

-60

0

How can I achieve the warmest indoor climate possible without melting my Igloo...???

→ max. temperature 0°C long-term up to 6°C short-term

Sports... Joe push-ups

- No inner sources just 1 person exercising (bathing suit):
- Push-ups: aprox.: 5met = $290W/m^2 \rightarrow human skin = 1.7m^2$

$$\rightarrow$$
 5met = 290W/m² * 1.7m² = 493W

 \rightarrow 120 push-ups in 1 hour to keep the body at aprox. 500W for 1 hour

WUFI for Igloos

• Case Sports : Joe's push-ups Bad... too powerful !!

Not appropriate !

- Case People...
 - No inner sources just 3 persons staying the whole day in the igloo...
 - 80W * 3 persons = 240W

Time [Hour]

Other solutions...

- Human body:
 - 80 100W (seating) \rightarrow Igloo
 - >100W (activity)

Candle:

- Heat of combustion of Paraffin: 12.5 kWh/kg
- Weight of small candle: 15g @ 5h burning time
 → Power = 37.5W
 - → Energy = **0.19kWh**
- Weight of medium size candle: 450g @ 43h burning time
 → Power = 130.8 W
 - → Energy = 5.63 kWh

Ventilation = 0.9 ACH (portal)... Joe's schedule

- Case Handmade heating system → set up heat sources
 - Calculation of inner climate with appropriate inner sources
 - Inner sources:
 - One person (relaxed 70W) during one month = 50kWh
 - Heat source candle during heating period (September-April)
 - Necessary:
 - January, February: max total Power needed = 250W
 - → 1 big & 1 small candle & 1 persons

Energy needed = 100kWh

- → 1 Person (50kWh) + 9 big candles (50kWh)
- <u>March</u> : max Power needed = 180W
 - → 1 big candle & 1 person
 - Energy needed = 80kWh → 7 big candles (40kWh)
- <u>November</u>, <u>December</u>: max Power needed = 250W
 - →1 big & 1 small candle & 1 person

Energy needed = 150kWh → 13 big candles (70kWh)

- Case Dimensioning → Preparing a handmade heating system – calculation of loads & energy
 - Calculation to dimension a HVAC system:
 - with PCM-effect of snow

Case Handmade heating system → indoor climate

- Calculation of inner climate with inner sources (with PCM-effect)
- One person

Perfect temperature to not melt the igloo

Comfort

PMV: Predictive Mean Vote- Joe will be Dissatisfied....

Healthy or not ? About a classroom

Possible to survive the cold with **25** candles and an Igloo

Red = outdoor

Time [Hour]

Case: Heating demand → -4F to indoor climate 32F

- Calculation of inner climate with heating (with PCM-effect)
- How much heating is needed to get indoor temperature to 32F fast?

[emperature [°C]

Be always prepared with WUFI®Plus

Joe Personal Survival Rating (PSR) Assessment has jumped to 9.4/10 with WUFI .. Initial PSR of Joe was -40...Without WUFI you will be top sirloin meat.

Joe..Next Time be careful when talking about WUFI..

Naked and Afraid : Discovery Channel

