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A Building is an Environmental Separator

Building Science Corporation
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. Control heat flow
. Control airflow
. Control water vapor flow
. Control rain
. Control ground water
. Control light and solar radiation
. Control noise and vibrations
. Control contaminants, environmental hazards and odors
. Control insects, rodents and vermin
. Control fire
. Provide strength and rigidity
. Be durable
. Be aesthetically pleasing
. Be economical
Building Science Corporation
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Damage Functions
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Damage Functions
Water

Heat

Ultra Violet Radiation
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The Three Biggest Problems In Buildings Are
Water, Water and Water...
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80 Percent of all Construction Problems are
Related to Water
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HAM
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Rain and Airflow Missing
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Moisture Transport in Porous Media

Phase Transport Process Driving Potential
Vapor Diffusion Vapor Concentration
* Adsorbate Suface Difiusion  Concenvaion
Cliud CapilaryFlow ~ SuctionPresswe
Osmosis Solute Concentration
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Recall That Rain and Airflow Are Missing
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Moisture Transport in Assemblies

Gravitational Flow
Surface Tension
Momentum
Convective Flow

Phase Transport Process Driving Potential
Vapor Diffusion Vapor Concentration
Convective Flow Air Pressure
Adsorbate Surface Diffusion Concentration
Liquid Capillary Flow Suction Pressure
Osmosis Solute Concentration

Height

Surface Energy
Kinetic Energy
Air Pressure
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Laws of Thermodynamics
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Zeroth Law — Equal Systems

First Law - Conservation of Energy
Second Law - Entropy

Third Law — Absolute Zero

Building Science Corporation
Joseph Lstiburek 23

2"d Law of Thermodynamics
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In an isolated system, a process can occur
only if it increases the total entropy of the
system

Rudolf Clausius
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Heat Flow Is From Warm To Cold
Moisture Flow Is From Warm To Cold
Moisture Flow Is From More To Less

Air Flow Is From A Higher Pressure to a
Lower Pressure

Gravity Acts Down

Building Science Corporation
Joseph Lstiburek 26

© buildingscience.com

May 16, 2016

13 of 131



University of Toronto Heat, Air and Moisture May 16, 2016

Moisture Flow Is From Warm To Cold
Moisture Flow Is From More To Less

Building Science Corporation
Joseph Lstiburek 27

Moisture Flow Is From Warm To Cold
Moisture Flow |Is From More To Less

Thermal Gradient — Thermal Diffusion
Concentration Gradient — Molecular Diffusion
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Moisture Flow Is From Warm To Cold
Moisture Flow Is From More To Less

Thermal Gradient — Thermal Diffusion
Concentration Gradient — Molecular Diffusion

Vapor Diffusion
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Thermodynamic Potential
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Vapor Diffusion
Convective Flow

Vapor Concentration
Air Pressure
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Vapor
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2T, 75°F 1T, 60°F
17 , 1T
RH = 50% RH = 100%
2T, 75°F 2T, 75°F
1T - 1'.T
RH = 50% RH = 75%
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\_f W u
90°F 75°F 60°F 45°F 30°F
50% RH 50% RH 50% RH 50% RH 50% RH
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Heating
35°F 70°F
90% RH 30% RH
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Cooling Reheat
S0°F ¢ s5F ¢ 75°F
90% RH ¢ 100%RH ¢ 40% RH
- -
e ——
Condensation
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Example: Alr leakage wetting of sheathing T 20
Interior: 21 °C/40% RH /
Exterior: <10 °C/85% RH ) ’
RSI2.11 battin studspace  uration = 100% RH P
RSI 1.40 insulated sheathing /!

T10 (9%

Temperature (C)

Cooling and condensation
From Straube & Burnett, 2005
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Water Molecules
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Size Matters
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Vapor

Liquid
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0.28 nm

9.58 x 10" a3k
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Polar Molecule

Building Science Corporation

Joseph Lstiburek 47

Building Science Corporation

Joseph Lstiburek 48

© buildingscience.com

May 16, 2016

24 of 131



University of Toronto Heat, Air and Moisture

Lstiburek

Vapor Diffusion Vapor Concentration
Convective Flow Air Pressure
Adsorbate  Surface Diffusion Concentration
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Monolayers of
adsorbed water
increase with
Increasing RH
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Monolayers
flow along surface
following concentration gradient

>
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“Bister”
Fiverboard
covorboard Modifed bituminous
system (MBS) covening
Two-ply
built-up asphait

ool membrane

Polytsocyancrate — Flsed steel
Insatation rool deck
Concrete
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Va— Gravel protective

/ cover
Top pour
= L\ Felt ply
’ ' . X R Interply layers
. . \
= i Adhering layer
4 J N A & A &

<+— Deck, insulation
. or cover board

From Baker, M.; Roofs, 1980
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Monolayers of oé-‘
adsorbed waler
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Curvature
/ ("meniscus”)
o
.
Small Large
pore pore
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Vapor Diffusion Vapor Concentration
Convective Flow Air Pressure

Adsorbate  Surface Diffusion Concentration

Liquid Capillary Flow Suction Pressure
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Calculating capillary rise

7 ambient
pressure

pressure \\

Building Science Corporation

Capillary rise versus diameter
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50 4

capillary rise [inch]

40 H

30

20

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

diameter [inch]
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S
=
) Curvature
s ("meniscus”)
S O, Hydrogen 210ms (+)
reach” upwards toward
oxide (-)
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Concrete slab

Polyethylene
vapor barrier
Granular
capillary break
and drainage
pad (no fines)
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— Capillary break under
slab
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Vapor Diffusion
Convective Flow

Adsorbate  Surface Diffusion

Liquid Capillary Flow
Osmosis

Vapor Concentration
Air Pressure

Concentration

Suction Pressure
Solute Concentration

Building Science Corporation

Joseph Lstiburek 70

Lstiburek © buildingscience.com

May 16, 2016

35 of 131



University of Toronto Heat, Air and Moisture

Lstiburek

Capillarity + Salt = Osmosis

* Mineral salts carried in solution by capillary water

» When water evaporates from a surface the salts left behind form
crystals in process called efflorescence

*  When water evaporated beneath a surface the salts crystallize
within the pore structure of the material in called sub-
efflorescence

» The salt crystallization causes expansive forces that can exceed
the cohesive strength of the material leading to spalling
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Pressures
 Diffusion Vapor Pressure 3 to 5 psi
» Capillary Pressure 300 to 500 psi
* Osmosis Pressure 3,000 to 5,000 psi

Lstiburek
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Combined Flows
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1.E-08 3
1.E-07 ¢+
Pore Size :
(M) 1e08+
1.E-09¢

. ’ Size of water molecule

1.E-10 " TR PR — PR 4 " — ']
0% 20% 40% 80% 80% 100%
Relative Humidity (%)
Ambient relative humidity at which capillary cond jon is predicted
to occur by the Kelvin equation
From Straube & Burnett, 2008
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g Condensation m
g e pores
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s
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Retatve Humidity (%)
Partal Pressure of Waser Vapor

Change in the storage of moisture in a porous budding matenal as the
Pactial peassure Of waner Vapor in g amDient av increases fom zero
o &4 saturation value at a given femperature

Sorption Curve
From MK Mumaran, ASTM UNL 15.2nd Eaton
Mosture Contres n Buddngs, 2000
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W, - supersaturation: all pores filied with water

W caplilary saturation .

W

refative humidity (%)

A Segie-layer of pisobed moecules
B. Multipie layers of adsorbed molecules

C: Inter lyers capilary
D2 Free water in Pores, capilary sucton

E! Supersatirated Regme

Regimes of molsture storage in & Mygroscopic porous materind
From Straube & Baras. 2008
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— == Kelvin (condensation)
—-—-- Rounsley (adsorption)
——— Actual measured

moisture
content

relative humidity 100

Typical predicted sorption isotherm according to Kelvin equation
and modified BET theory
From Straube & Burnett, 2005
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Relative Humidity (%)
Average sorption isotherm for wood as a function of temperature
From Straube & Bumes, 2005
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Moisture Content vs. Relative Humidity

R R R

Equilibrium Moisture Content (EMC) %

0 5 10 1520 25 30 35 40 45 5055 5 65 70 75 8 85 0 95 00

Relative Humidity (RH) %
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Water Vapor Permeance vs. Relative Humidity
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Kraft facing permeance as a function of humidity (Glass 2013)
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Water Vapor Permeance of MemBrain™ Smart Vapor Retarder,
Primed and Painted Gypsum Board, Unpainted Gypsum Board and

Mean Relative Humidity, %

Asphalt-Coated Kraft Paper
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Water Vapor Permeance of Sheathing Materials

Water Vapor Parmeance, US perms

T T T

0 10 20 30 40 50 60 70 80 0 100
Mean Relative Humidity, %

2000 +
1600
1200 4
Permeance
(ng/Pa s m?)
800 4
400
0 "
0
Relative Humnidity (%)
Vapor permeability test results for weod-based products as a function of R
[Kumaran of &l 2002]
From Straube & Busrmit, 2006
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Wood Fiber

Fibers get much thicker than longer
when they pick up moisture

\ Studs get much wider and thicker,
Y™ but not much longer, when they pick up moisture
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Machine
direction
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Still More Combined Flows
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Water

Y

—_—

Schematic drawing of the transient moisture fransport process that is
used to determine the liquid diffusivity of porous building materials. All
four longitudinal surfaces of the test specimen are coated with water
vapor resistant epoxy resin and one of the open-end surfaces is in contact
with water while the other is open to the ambient air.

Determining Liquid Diffusivity of Porous Building Materials
From M K. Kumaran, ASTM MNL 18-2nd Edition,
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How Does Wetting Occur?

Building Science Corporation
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g

* “non-wetable” surface

« water repellant surface

* hygrophobic surface

« water more attracted to itself than to surface

« surface energy of water greater than surface
energy of surface

* water “beads up”

* “greasy” surface

« high contact angle “#"

« “wetable” surface

« non-water repellant surface

= hygroscobic surface

« water more attracted to surface than itself

« surface energy of surface greater than surface
energy of water

« water “spreads out”

* “non-greasy” surface

= low contact angle “¢"
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Non-wetting Partal wetting Waetting Perfect wetting
9> 00° 6=90" 0 <90" 8=0°
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Building Science 2008
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Surface Energy

Water (20 C)
Water (100 C)
Epoxy
Polyethylene
Soapy water
Paraffin wax
Silicone
Teflon

73 dynes/cm
59 dynes/cm
46 dynes/cm
31 dynes/cm
30 dynes/cm
25 dynes/cm
24 dynes/cm
18 dynes/cm
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More Combined Flows
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Hutcheon-Paxton Experiment
Water concentration Sai concentration
- ~ \ — 4 /S -
P \ — ~ / -
= —. | P LY.
No temperature [~ ’/ ~ = = -/ =
once ; . . £ - |
N\
N~ — — ~ - ~
\ \

Condensation Evaporation
Capltarity Surtace diffusion
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Layer/Material Name Oriented Strand Board low ) _ﬂ_’
Material Data | Info
Basic Values _Hygrothermal Functions §
- |
|Bulk density [Ib/#’] 35896 | |Liquid Transport Coefficient, Suction
Porosity [R¥/A") 0.8625 Liquid Transport Coefficient, Redistribution
'Specific Heat Capacity, Dry [Btuib'F] 10449 Thermal Conductnty. moisture-dependent
- N 5 Thermal Conductivity, temperature-dependent

| Thermal Conductwity, Dry ,10°C [Btwh ft°F] 0.049 | | Enthaipy . depend
Permeability [perm in] 10.109 ) .
[ Approximation Parameters Graph | Edit Table from File
Reference Water Content [Ib#] 4.451 25
Free Water Saturation [Ib/ft*] 120.82 | 20
|Water Absorption Coefficient [Ib/ins*0.5] 0.000003 | g
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F?) 10.000064 ? 15

£

S 1o

Typical Built-In Moisture [lo/R*] 4.37 5 J
Layer thickness [in] 0.1252 f 5 -
0 ——
0 02 04 06 08 10

Relative Humidity [ - ]
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Layer/Material Name | Oriented Strand Board low

Material Data |info |

.]E

Basi _Hygrothermal Functions
E S 1 Molsture Sto Functlon 1
Bulk density (] EX < Tronspo Cocficient, Suction |
'Povosily [ReR7] »0 8625 4 Eqwd Tralln:;pon Coelﬁcnem Redlstnbuhon
 Specific Heat Capacity. Dry [Btu/b*F] [0449 || Thermal Conductivity mo.sturwepenaem
p o s Thermal Condk y P p
Thermal Conductivity, Dry .10°C [Btuh °F) [CETN | oo rrs
Permeability [perm in] 10.109
 Approximation Parameters GfiP"_a[id'! Table i
Reference Water Content (1] |4.451 7 10%
|Free Water Saturation [Ib/#’] 12082 %‘ 10-9.0
Water Absorption Coeffcient [Ibin’s*0.5) 0000003 ||& o /
Temp-dep. Thermal Cond. Supplement [Bwh #°F7 |0.000064 | | '0
o
t1o 10.0
- /
Typical Built-In Moisture [Ib/R*] 437 240-10.5
e
Layer thickness [in] 0.1252 ;1 o110 ,/
e
S0 ——5 595 95 0
Color (I -] | Normalized Water Content [ - ]
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Layer/Material Name Oriented Strand Board low -] E
Material Data |info |
Basic Values hermal Functions
g + | Moisture Storage Function
Bulk density [Ib/f*] 135.896 | Liguid Transport Coeficient. Suction
= fosezs |
'Specific Heat Capacity, Dry [Btulb'F] [0449 || Thermal Conductivity, moisture-depend
Thermal Conductivty, Dry .10°C [Btuh #°F) X ‘E"‘n:"";:y" ductivity, temperature-depend
Permeability [perm in] |0.109 B B
: A e T Graphg%a Table from File
Reference Water Content (1o 4451 | [@ 107
|Free Water Saturation [Ib/#"] |20.82 | %
Water Absorption Coeficient [Ib/in‘s*0 5] |0.000003 ||-810-100
| Temp-dep. Thermal Cond. Supplement [Btu/h ft*F?] |0.000064 Eg /
O4n-
g1 0 104 /
Typical Built-In Moisture [Ib?] 4.37 & /
‘ 810108
Layer thickness [in) 01252 v
fcg,.
S0 o5 o8 70
Color ([N -) Normalized Water Content[ ] '
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Layer/Material Name | Oriented Strand Board low -] E
Material Data ‘“m ]
Basic Values _Hygrothermal Functions
Moisture Storage Function
Bulk density [Ib/f?] 35896 Liquid Transport Coefficient, Suction
o TR, Liquid Transport Coefficient, Redistribution
Porosity (W] __ -
Specific Heat Capacity, Dry [Btu/Ib*F] 0449 Thermal Conductivity, moisture-dependent
N s Thermal Conductiity, temperature-dependent
Thermal Conductmity, Dry ,10°C [Btuwh ft°F) 0.049 Enthalpy, temperature-dependent
Permeability [perm in] 0.109 ) i
Approximation Parameters Gragh 3 Z“ Table| el
Reference Water Content [Ib/ft*] 4451 10
Free Water Saturation [Ib/t*] 2082 = 1004 P
Water Absorption Coefficient [Ib/in®s*0.5] 0.000003 £ —
Temp-dep. Thermal Cond. Supplement [Btwh 'FY] 0000064 | | & 10-0.0
£
2 1004
Typical Built-In Moisture [Ib/R?] 4.37 2 /
Layer thickness [in] 0.1252 E 1008
10— 57 95 05 70
B 1
Color I -) Relative Humidity [ -]
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When Phases Change
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Outside Inside
70°F
N
0°F “— Dewpoint
— (50% RH, 70°F)
Location of
: . condensation
xteno'r - > and frost
sheathing

Building Science Corporation

Joseph Lstiburek 127

Building Science Corporation

Joseph Lstiburek 128

Lstiburek © buildingscience.com 64 of 131



University of Toronto Heat, Air and Moisture May 16, 2016

N
Sensible Heat ~ 14.2 JigiK [ / Vapor
Latent Heat 2250 J/ig
Energy
Sensible Heat |42 Jigk  Liquid
Latent Heat 333J/g
| 2.1 Jig/K Solid
>
I 1 7
0 273 373
Temperature (K)
Simple linearized energy-temperature relation for water
From Straube & Bumett, 2005
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The insica tace of the
extonior shoathing &
e condenaing surface
Of Wirest 80 N
70 ¢
Wood-based sidng =1 el '
—— -
Busiang paper —o &
~o £l
Extonor sheatheg = e
816 cavity insutation in wood - g 40— leTpersiue
feame wall }: b
— § 0 == \
= v Dew pont temp 1 - |
- 20t | latwRH 10F SmmrerWresma.
- : ‘
— '
—
Gyprsam boaed with any paint of 10 | Dew pont temp S W T —
wal covenng —o #20% RH, POF el

APR MAY JUN JUL ALG SEF OCT NOY DEC JAN FES MAR APR MAY
Month
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Fadasonsteathng merlace
Semperature (R-7 5 shesthing
R13 cavity insutaton as

3

Wood-based sidng

A-7.5 rigyd insulation

-3 cavity msutaion in wooo
ame wal

Temperature {'F)
s &

Dew pont temp -~/
10 . 4 | 4 L M3SNRH TOF

Gypaum Lowd with any pant o
woll covering

APRL MAY JUN JA AUG SEP CCT NOVW DEC JAN FED MAR APR MAY
Month
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24 ™ WINNIPES -
22 |~ WETTING POTENTAL &7 -
" — DRYING POTENTAL TO -
&£ 20 = —
2 [ N
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) ~  OUTDOOR AIR TEMP —
Sie - 2 .
X = =l
als - =]
d o= —
a 1.2 = VR INSDE BUILDING -
Sro -
E i VENTILATED -
ol BUILDING -
[+ 4 = —
D206 |- =l
o -
Gos |-
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J EMoA M g J A S © N [*)
TIME MONTUS OF A YEAR

Figure 8-7. OQutside vapour pressure, saturated vapour pressure
and inside vapour pressure for Winnipeg.
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Outside

“— Roof sheathing

~

~- Condensation and frost
accumulating on underside
of roof sheathing

Inside
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Roof sheathing
and top of attic
Iinsulation are
radiation-coupled

TN
¢ ‘»5/52/

Root sheathing

Condensation and frost
accumulating on underside
of roof sheathing

_~ Condensation and
frost accumulating
Attic / on top of attic
’ insulation

c.,pt-,-o..ooyo’{.r "
'R \

"JI\'Y"‘(J_.(,’V. BRSGARG

Inside
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Revisiting Convective Flow
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J
=~
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Cladding
ventilation

N
0

J L
Outer lining Inner lining
leakage leakage
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!E]EJJ

NNSNNNNN

Cladding |7 7
ventilation

Insulating sheathing )
aks S
leakage Inner lining

Quter lining leakage
leakage
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Cladding Ventilation/ Sheathing Ventilation

Flow Rate Gap
Wood Siding 0.1 cfm/sf 3/16*
Vinyl Siding 0.5 cfm/sf 3/16"
Brick Veneer 0.15 cfm/sf s
Stucco (vented) 0.1 cfm/sf 3/8"
Stucco (direct applied) none none
Sheathing flanking flow  0.05 cfm/sf 3/16"

ACH
20
200
10
10
0

10
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Interior gypsum board
e
Brick veneer ——» o
. ol =" - - Metal studs are perforated
Air space - 9l / permitting air to be drawn
o, 1 through wall cavity -
Building paper o+ __
P ~
= ——— > e
. ) I
Gypsum sheathing o {4l ﬁ. _

- v “— Interconnected hollow wall

acting as an air duct

Fiberglass cavity
insulation

’JL-W 5

— ) cavity constructed from metal
i studs with punched openings

Interior spaces are at a positive
pressure relative to the exterior
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Interior Load — Exterior Load
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Los Angeles, CA

y-100 -0022

) L0020
Loote

/ ! -'0016

/ -
4 ' L0014
—f_vCD
Loo10
ir.l 008
:U-‘."k'-
-Oﬁl_\-x

-0002

Absolute Humidity (Ibbuey)

.

S S S T A et S S B e S e e SES o (X0 1.1
104 176 248 0 292 464 536 608 630 752 824 896 968

Drybuib Temperature (F)
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Minneapolis, MN

2

T

e o

5 N
Absolute Humidity (Ibbuey)

ey 0006
0004

0002
T T | Jewcy Eamn [y pe 1vvwv.'0000
32 104 176 248 320 392 464 536 608 630 752 824 896
Drybulb Temperature (°F)

T
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Absolute Humidity (Ibibuy)

T e — &

- L2 v =, Al T
32 104 176 248 320 392

T

T
896

| JUSE BENE S S A mass maus snes mase sy
464 536 608 €630 752 @824
Drybulb Temperature (°F)
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Las Vegas, NV
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/ 8%
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Absolute Humidity (Ibbuey)
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Seattle, WA

Absolute Humidity (Ibbuy)

T T T T T ™17
630 7

W
"

T Y T T
392 464 536 808

Drybuib Temperature (F)

32 104 176 248 320
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Temperature

[ Adjustments

IMean Value [*F]

Amplitude [°F)

bDay of Maximum

Constant

Relative Humidity

[ Adjustments

N

an i 1011/ 1231/
Date

IMean Value [%)

Amplitude [%]
Day of Maximum

Constant

77
o
75.0 | 3 &
20 %75
87372013 g7
' 7
1M
100
80
45 | .
15 g
[8/1672013 %
-
20
0
m

& i 1001/ 12131/
Date
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Don’t Do Stupid Things
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Exterior Conditions Conditions within Cavity: Interior Conditions
Tempecature: 80°F Tormpecature 100°F Terrporature 75'F
Relatve humdity: 5% Relatve humidity: 100% Retative humidey. 60%
Vapor pressure 2 49 kPa Vapor pressure: 6.45 kPa Vaper pressure 1 82 WPa
stnkes wall
Brick vonaor % saturated .-
Wi ralmwater N\
- N Vapor is driven both inward and
1400 DI BPBDE Sutward Uy a8 high vapor prossuce
Fell paper “ diferential Detween T brick and
ﬁ e the snenor and the brck and the
[ e lhlm’ »V xterior
Foorg At -
Polyethylene .
\merior gy poard . L ——

. n-w-qmmumlakumw)mm

nsice of an mbly. Vinyl wall gs and foil-
Madm“vtylmmommummd
« Vapor p bl hoath aps or bullding

mnmumummumwomm..

brick veneers unless a ventilated cavity is provided in conjunction
with high mward drying potentials (L e. 1o intenor polyethylene vapor
barriers)

. F-ummllmnmwnnmlodownmmmlmmd
with folt papar, fiberb Vapor
Darrier Wermemmuum-nmolmhm
batts and a polyethylene vapor bamer, 088, plyweod or foam sheathing
should be used in place of the fiberboard sheathing

« Similar problems occur with stuceo.

Building Science Corporation
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- Drainage plane
Brick Clear 1" air space cpon at both
wventiatoc bottom and lop
out of assembly
r Seat in loundation acteg as Nashing

+ To aflectively uncoupie a brick veneor from a wall systom by using
back ventdation, a dear cavity must be peovided along with both
air injats at the bottom and air cutiets at the jop
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Masoary (resenvor’)
Foiltaced 1DorDiass
Viarket" insulaton .
\g
Solar udhﬂon\\
strikes wall V)
e Fod s intarior N
VapOE Damier \
) oY
T
\
Ny
) N\
N
N
b 5 2.
*  Rain water i doposiied on + Solar rodvation heats edenor
oxterior face of mascary whie A'C cools intenor
* Rain water enters masoary * Momture B drven ward
through paint yer CONGANIes ON fON VapSe Damer
and ues down wall
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Acrylic latex paint layer (vapor
open, minimum 15 perms or
greater at 9 mils dry film thickness)

'\\— Expanded polystyrene (no facings)
Painted gypsum board (latex paint;

no wall coverings) '
Air space

Metal channels (EPS is
continuous behind metal
channels)
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O lyes o0 maulenon
Fluted” matal deck
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Rain

Gravitational Flow
Surface Tension
Momentum
Convective Flow

Height

Surface Energy
Kinetic Energy
Air Pressure
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=

Rain droplets can be
carried through a wall
by their own momentum

o o

Rain entry by momentum

can be prevented by designing

wall systems with no straight
through openings
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Water
film

Kerf

Water
film ——>

Rainwater can flow around
a surface as a result of
surface tension

Providing a kerf or drip
edge will promote the
formation of a water
droplet and interrupt flow
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Flashing
with drip

=
R

Rainwater can flow down
surfaces and enter through
openings and cavities

PN | BN

Flashings direct gravity
flow rainwater back toward

the exterior
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Exterior air  Cavity air Interior air
pressure  pressure pressure
(Pe) (Pe) Py
-

‘~“L_v_
maz il

4 o
V. o

Pe > Pc > Pj

Driven by air pressure differences,
rain droplets are drawn through
wall openings from the exterior

to the interior

Exterior air Cavity air Interior air
pressure pressure pressure
(Pe) (Pe) (Py)

| £ /]
LB B =
!
]
j— - -

e

l Pe=Pc>Pj

By creating pressure equalization
or pressure moderation
between the exterior and cavity air,
air pressure is diminished as a
driving force for rain entry
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When We Talk About Rain We Also Include

Capillary Flow
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r
*
Water »
film —— *9
2
—
yat
L *
P

Capillary suction draws
water into porous material

and tiny cracks

Cavity ———

y P
Water ‘ @
film

yy
2

Cavity acts as capillary
break and receptor for
capillary water interrupting flow
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All We Have To Figure Out Is How Much Hits

The Wall
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All We Have To Figure Out Is How Much Hits

The Wall
We Need Straube and Kuenzel
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6 Falling Rain

Gravity

Wind
Building Science Corporation
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Wind Pressure (Pa)

15% 0.6 24 54 96 15 22 29
12% ¢+
9% 1

Relative
Probability |
(%) &%+
1
3% 1
0%

0

Wind Speed (m/s)
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RDF
Low-rise Bulding HW << 1 Tal Building (>10m) HW >> 1
Max: About 0.5
<020
020-035
0.35-0.50

o= <035
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We use Straube/Kuenzel to determine how much rain water impinges
on the wall.

We assume 30% bounces off

70% stays on the wall.

The 70% that stays on the wall is addressed by liquid conductivity
(capillary flow) and vapor diffusion.

We assume 1% of the 70% penetrates to the back side of the cladding.

We further assume that 1% of the 1% gets past the water control layer
into the sheathing.

Building Science Corporation
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Rain penetrating water

control layer

Rain penetrating
cladding

Incident
rain

N

NNNNNSNNNNNE
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Solar
radiation

</ /

Solar vapor
drive
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C A
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Hydrostatic
pressure
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Hydrostatic
head

+—— Cladding
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Pascals mph

50 Pa= 20 mph
100 Pa= 30 mph
150 Pa= 35 mph
250 Pa= 45 mph
S0 Pa= 65 mph
1000 Pa= 90 mph

Wind Speed (mph) vs. Stagnation Pressure (Pa)

oo
a0 Ve

w)

n

0 100 200 200 400 S0 &0 TN

800 900 1000
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Rain enters cup
due to momentum
("kinetic energy”)

Y

Y

Y

v

6 Cup drains water
to exterior
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Rain enters cup b
due to momentum
("kinetic energy”) b rx\
> ]
[+ Entire wind
Wind enters cup— —> 4— pressure
pressurizing cup; b taken here
no rain entry due
to wind driven rain b
&ﬁ;’/ S
6 Cup can still drain
water to exterior
Building Science Corporation
2011 Joseph Lstiburek 199
Baffle to deflect raindrops
hitting face of cup due
to momentum
("kinetic energy”)
Pressure incup is b \
same as pressure B
outside on face
of baffle
Entire wind
Momentum driving force pressure
converted to gravity— taken here

water drains away

Wind enters cup— —>

pressurizing cup; 0{:’:2‘:'%/
no rain entry due
to wind driven rain

water to exterior

06
05 Cup can still drain
o
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Insulating
glass unit

Seal (gasket)

Hole providing

drainage and

pressurization

Rough opening

Seal (tape)

Setting block
(typically two
per unit)

_~—— Frame

- — -y
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Outer seal sees
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