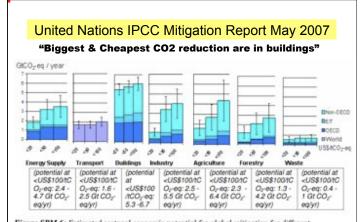

Low Energy Buildings Retrofits Stories from the trenches

Dr John Straube, P.Eng.
Assoc. Professor
University of Waterloo
Principal, Building Science Corporation

Buildings

- Buildings are a major contributor to the problem
- Low-energy / green is not a "style"
 "movement" etc, but a societal imperative

The Problem


• We have been living to excess for too long

Current crises:

- Carbon emissions
- Energy Security

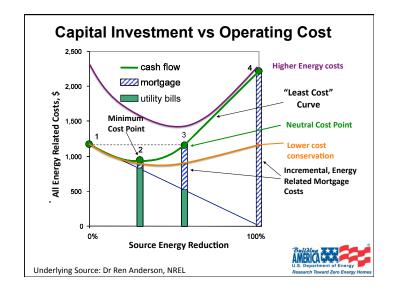
General on-going problems

- · Excessive resource use
- · Damaging emissions
- · Habitat destruction, run-off etc

Reasonable Building Targets

- 30% reductions currently economic optimum for new buildings
- 50% reduction cost little today
- Long-term (25+ yrs)
 - 60-90% reductions for new and retrofit
 - Depends on technology/economics of generation vs production
- Renewables before conservation are irresponsible

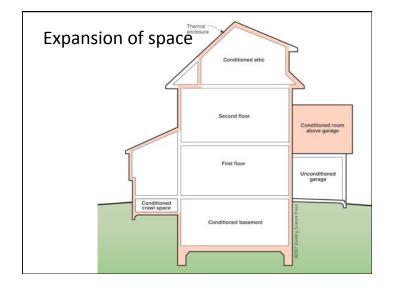
New-build Office Kitchener Healthy


Durable
Healthy
35% of energy
120 kWh/m²/yr

Market cost

 Green doesn't have to look or feel different

Dorset St Green Office/MURB office Market cost Durable Healthy 40% of energy 110 kWh/m²/yr



Deep Retrofit:

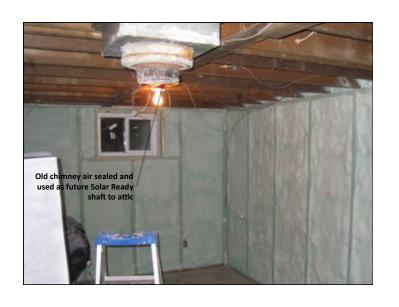
- Major proportion of emissions are from existing buildings
- Any comprehensive policy must deal with existing buildings
- Half measures should not forestall proper solutions
 - Leave more significant future upgrades open
 - EcoEnergy good, but .. we need more

Why Retrofits?

- Not just energy!
- Improve comfort!
- Fresh new look
 - Avg new kitchen is \$25000
- Expand living space
- Improve air quality
- Improve durability safety

Energy

- Space heating and DHW is often 60-80% of total energy
- Insulation, airtightening can save 50-75% of heating
- Better mechanicals/appliances save 20-40% of heating, DHW, and electricity
- Then .. renewables such as SHW and PV can reduce energy consumption further


Process

- Major issue in retrofits
 - People are usually living in home
- From exterior is much easier, safer, cheaper and more powerful
 - Huge benefits not understood
- Staging windows, mechanicals, enclosures
- Conservation economical now!
 - Renewables are still expensive, but get ready ...
 - Beware climatic differences

Above grade walls

- Interior retrofit limits improvements to airtightness, rain control, thermal bridge
- Exterior allows excellent improvements and increased durability
- Windows should be done at the same time
- Installation cost \$200+/- so get good windows, eg vinyl triple glazed for \$30/sf

Windows

- Important choice!
- Improved R-value of course
 - Triple are still low volume = high cost
 - Starting to become more affordable
- Need better rain control

Mechanicals

- Air-to-water low temperature heat pump
 - System COP=2.3 @-10C, \$4500
- High Efficiency HRV
 - 75% efficiency, 35W, 40 cfm, \$500
- Ductwork
 - Low pressure drop, good filter, \$2000

Energy / Economy

- Energy-related upgrades cost :\$22-25K
 - Heatpump, ducts, HRV \$4500+2000+500
 - Basement/walls insulation \$5200+4200
 - Windows \$5000+ 2500
 - Attic \$1250
- Many other upgrades: bed, bath, flooring, basement double floor space (another 40K)
- Savings: ca \$2000 / yr

Future

- Add active renewable energies
 - As their cost drops
- Purchase renewable energy
 - As it becomes available

How a 100 year old house is renewed to last an additional 100 years

Ventilation

60% AFUE for the old boiler -gas -delivered by radiators

0.0% AT U.S. In the full botter in gas ventioned by faulations
9 EER for the window units
0.4 EF for hot water efficiency- AVERAGE
summer efficiency is much worse
winter efficiency would be about at 60% (since the boiler is heating the house already)

Machanical Systems	ΔFTFR

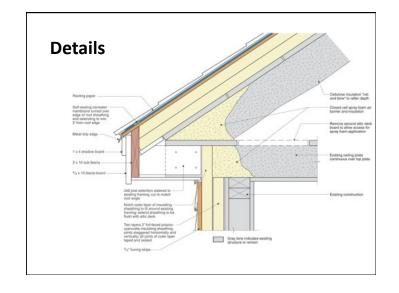
Sealed combustion 92% AFUE gas boiler boiler in conditioned basement

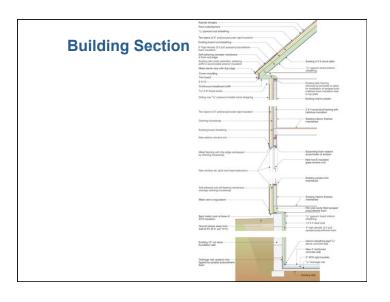
14+ SEER split system in conditioned space Cooling 0.82 EF side-arm storage tank DHW

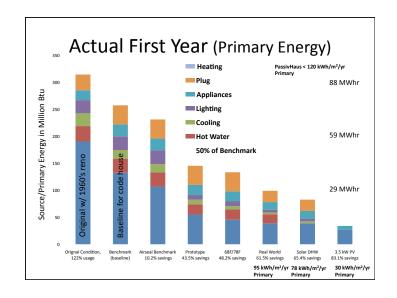
Ducts R-4.2 flex runouts in dropped ceiling or in floor joists Leakage none to outside (5% or less)

> Fan Cycler Supply-only system integrated with AHU 33% Duty Cycle: 10 minutes on; 20 minutes off 60-80 CFM continuous average flow

Return Pathways Transfer grilles/jump ducts at bedrooms







Actual First Year

3200 kWh and 570 Therms gas (16700 kWh) 67 kWh/m²/yr <u>Site</u> Energy

Electric @ \$.15 /kWh Gas @ \$1.50/therm Electric \$471 Gas \$858 Electric/mth - \$39 Gas/mth = \$71 At today's rates: Electric \$576 Gas \$998

Initial Cost Of Measures	Annual Savings	Annual Finance	Cash Flow
\$75,000	\$4005	\$4832	(\$827)

If energy prices rise 20%, cash flow exceeds cost of measures

Energy Measures = New Mechanical Systems, Insulation, and New Windows

How far should we go?

- Reduction of ½- 3/4 can be easily achieved today
- Even Zero Energy house likely not the best goal
 - Need to pay for the grid, deal with intermittency
 - Take advantage of wind, hydro, cogen, etc
- PassivHaus seems too much conservation
 - Cost of RE generation is lower than the cost of extreme efficiency
 - PV dropping.. Soon <\$0.20/kWh, wind <\$0.10/kWh
- Design of v. low / zero energy buildings is brittle

Conclusions

- Carbon emissions & energy security require buildings that use much less energy
- Economics argue for better buildings
- Technology exists for better buildings
- Missing links not really technological
 - Regulation, demonstration, trade knowledge, academic dissemination, banks, insurance, measured data paucity

www.buildingscience.com search for "retrofit"

Technology Needs

- Not many significant obstacles ...
- Smaller heating systems
 - Particularly non-gas, and storage, ASHP
- Lower cost high performance windows
 - R5 becoming affordable
- Controlling plug loads / vampire loads
- Cladding attachment
- Codes and Setbacks