

The Next Frontier of Building Science: Air Leakage

Achilles Karagiozis

Global Director Building Science, Sustainability **Owens Corning**

THE PENK RANTHERTM & \$1964-2011 Pheno-Gostwyn Player Studios Inc. All Rights Reserved

- Mikael Salonvaara, Owens Corning
- Andre Desjarlais, Oak Ridge National Laboratory
- Laverne Dagleish, ABAA
- Dave Wolf, Owens Corning
- Department of Energy, DOE
- Diana Hun, Oak Ridge National Laboratory
- Hartwig Kuenzel, Fraunhofer Institute of Building Physics

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

- Objectives (Short Term and Long Term)
- Simplification of the Physics
- Air Leakage performance structure
- Passive House wall Heat-Air-Moisture analysis
- Implementation of a approach for Design

JStraube

- My Motivation Owens Corning wants to provide higher performance level analysis (quantification) to building community
- ORNL/DOE Motivation Increase awareness and upgrade in performance goals for USA building in

It is **important** for Building Science to get a better grip on this topic University Motivation-Increase air tightness, understand impact and create a design approach

Question :

How much air Leakage does this woodpecker cause ?

Building science is lacking.... Need Quantification

JStraube

S T A T I S T I C S

TYPICAL AIR LEAKAGE PATHS

Attention to all construction Details are a Must !!

OWENS

INNOVATIONS FOR LIVING"

Specifying the details...and then training our contractors to do-it-right!

Exterior Air Sealing Strategies

Interior Air Sealing Strategies

Short-Term

- Include air leakage thermal losses in envelope Calculations
 Include the 1-D WUFI Analysis
 Include the 1-D WUFI Analysis
- flow calculations
- Be able to address durability design analysis

Long-Term

- Include 2-D, 3-D WUFI Analysis
 Full WUFI+Passive Streakage

Intentionally Leaky... added holes

Temperature

Minneapolis: Study by ORNL and BSC

- Explain the basics needed to be captured in WUFI model
- Show the process
- Take science data to the field (From an academic exercise to reality)

• Air flow through the wall

- Through insulated wall cavity
- Between components (where the majority of the leakage flow happens)

Wind-washing

No flow through – flow in and out (insulation)

Terminology Session: Where is Professor Eric Burnett ?

or

- Wind barrier
 - Prevent "windwashing" of insulated cavity
- Air barrier
 - Prevent air flows
 <u>through</u> the wall

Stack + mechanical ventilation Wind $(+/-\Delta P)$

Infiltration/Exfiltration is the unwanted air movement through a building and is caused by a pressure difference (air moves from high pressure to a lower pressure).

- Add heat and moisture source to
 - Exterior cavity (air from outdoors/ins. cavity)
 - Insulated cavity (air from ext. cavity/indoors)

 Fourier's Law – Heat is transferred from a region of higher temperature to a region of lower temperature

$$Q = -kA\frac{dT}{dx}$$

 Fick's law – Mass is transferred from a region of higher concentration to a region of lower concentration

$$J = -DA \frac{dC}{dx}$$

Mass Balance

$$\frac{\partial \rho_a(T)}{\partial t} + \nabla . (\rho_a(T) \vec{v}_a) = 0$$

Momentum Balance

$$\frac{\partial(\rho_a(T)\vec{v}_a)}{\partial t} + \nabla(\rho_a(T)\vec{v}_a;\vec{v}_a) = -\Delta P_a + \frac{\mu_a(T)}{K_a}\vec{v}_a + \rho_a(T)\vec{g}$$

Energy balance

$$\rho_{m}(u,T)C_{p}(u,T)\frac{\partial T}{\partial t} = \underbrace{-\nabla . \left(\rho_{a}C_{p}(T)\vec{V_{a}}T\right)}_{Convection} + \underbrace{\nabla . (k(u,T)\Delta T}_{Conduction} + \underbrace{L_{v} . \left(\delta_{p}(u,T)\nabla P_{v}\right)}_{Evaporation} + L_{ice} . \rho_{m}(u,T)u\frac{\partial f_{i}(T)}{\partial t}$$

Condensation

Mesh containing 590 elements

Mesh containing 2360 elements

- Air can leak one-dimensionally all the way through, or some of the air may be lost (or added!)
- Initially, let's assume that all flow will go through and there are no leaks
 - Flow direction would cause problems in assigning the source (attic, etc.)

Procedure to Calculate Sources and Sinks

- Calculate pressures P
 - Wind
 - Wind pressure coefficients and locations
 - Wind speed and direction
 - Stack
 - Neutral pressure plane
 - Mechanical ventilation and building pressure balance

Calculate flow through

Air leakage characteristics

Wind pressure on buildings

- ASHRAE Fundamentals 2005
 - Bernoulli's equation

$$p_v = \frac{\rho_a U_H^2}{2}$$

where

 U_H = approach wind speed at upwind wall height H, m/s

 ρ_a = ambient (outdoor) air density, kg/m³

• Wind pressure coefficient on the wall Cp

The proportional relationship is shown in the following equation, in which the difference p_s between the pressure on the building surface and the local outdoor atmospheric pressure at the same level in an undisturbed wind approaching the building is

$$p_s = C_p p_v \tag{3}$$

where C_p is the local wind pressure coefficient for the building surface.

Wind speed at the building (wall) height

Location affects the wind speed

Table 1 Atmospheric Boundary Layer Parameters

Cerrain ategory	Description	Exponent a	Layer Thickness δ, m
1	Large city centers, in which at least 50% of buildings are higher than 21.3 m, over a distance of at least 0.8 km or 10 times the height of the structure upwind, whichever is greater	0.33	460
2	Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger, over a distance of at least 460 m or 10 times the height of the structure upwind, whichever is greater	0.22	370
3	Open terrain with scattered obstructions having heights generally less than 9.1 m, including flat open country typical of meteorological station surroundings	0.14	270
4	Flat, unobstructed areas exposed to wind flowing over water for at least 1.6 km, over a distance of 460 m or 10 times the height of the structure inland, whichever is greater	0.10	210

$$U_H = U_{met} \left(\frac{\delta_{met}}{H_{met}}\right)^{a_{met}} \left(\frac{H}{\delta}\right)^a$$
 (4)

Local wind pressure coefficient C OWEN need to simplify INNOVATIONS FOR LINING

Physics to the Field

Fig. 4 Local Pressure Coefficients ($C_p \times 100$) for Tall Building with Varying Wind Direction (Davenport and Hui 1982)

Default value: assume average wall coefficient (tall buildings)

for Tall Buildings (Akins et al. 1979)

 Default value: assume average wall coefficient (lowrise)

 Buoyancy effect: Density difference of air outdoors and indoors

- Building pressure calculations
- Building zones
 - Room to room balance
 - Stratification (bottom to top)
 - Location of the leak in the building and in the element matters!
- Have an attic zone, and a crawlspace zone

$$\Delta P = \Delta P_{wind} + \Delta P_{Stack} + \Delta P_{Mechanical}$$

$$\Delta P = \Delta C_p \cdot \frac{1}{2} \rho U^2 + \frac{pM}{R} \left(\frac{1}{T_{out}} - \frac{1}{T_{in}} \right) \cdot g \cdot H + \Delta P_{Mechanical}$$

- In addition to exterior cavity, we have now air leaks in and through insulation layer
- Wind Pressure Difference and Thermal Buoyancy result in a pressure difference across the wall.
- Heat source:
- Moisture source:

$$S_w = Q(c_{source} - c)$$

 $Q = C\Delta p^n$ Wall assembly air leakage characteristics

- Q[m³/h-m²]Volume Flow Rate through the
wall per m²Δp[Pa]Pressure difference across the wall
- $S_h = \rho_{in} \cdot Q \cdot C_{p,Air} \cdot (T_{in} T)$
 - S_w: Moisture Source [kg/m²s]
 - $$\label{eq:source} \begin{split} c_{\text{source}} &: \text{ Water Vapor Concentration in the incoming Air; } \\ & [kg/m^3] \end{split}$$
 - c: Water Vapor Concentration in the air in Layer [kg/m³]

- Characterize and identify major air leakage paths in walls
- Assess methods to seal significant sources of leakage

All joints/openings in the building envelope should be air sealed.

But, some joints/openings must be more important than others.

Which ones?

Which ones?

A good question, but ...

Not so easy to answer.

- Lots of different types of joints
- Differing levels of construction quality
- Not easy to isolate and measure
- Then there's this thing called "coupling", where other things around the joints affect its leakage

DOE/ORNL/Tremco's ABAA

ASTM 2357 Cycling Pressures

Tim Maddox

Phase 3 (2012 – 2013): Critical Tests

Each of the 8 Air Barrier Systems will be tested at least
 5 to 15 different attachments each !

Interior

Spray-applied foam

Mechanically fastened

Non-insulating board stock

Insulating board stock

Sealers w/ backup structure

Self-adhered

Fluid-applied nonfoaming

Typical House | Biggest Bang for the Buck

Interior Air Sealing

Most Effective Joints to Seal

Wolf ,Salonvaara & Tyler; Owens Corning 2012

Ranking for Particular Air Barrier & Housing Project

Really nice to have blower door data

But what does ACH50 mean ?

We **need** the actual loading between Housing Zones

At Minimum ATTIC-MAIN-BASEMENT

- Remember the serial order of sources/sinks
 - Insulated cavity gets air from exterior cavity or indoors (light weight wood frame wall, for example)
 - Relate to three leakage classes (Envelope):

- $Q = C \Delta p^n$
- No diffuse seeping flow through materials
 - Only sources and sinks
 - Exterior cavity (maybe, depends on flow path def.)
 - Insulated cavity
- Source assigned to this layer.
 No sources to 'impermeable' that are bypassed by airflow.

- Add heat and moisture source to
 - Insulated cavity (air from outdoors)
 - Flow mostly on the interior side of the insulated cavity (natural convection as a force)
 - Air tightness to be defined for cavity
 - Force for flow is stack (wind can be added with C_{bottom}, C_{top})

Passive House Air Leakage Study Independent of Insulation Type

Passive House Technical Committee

- Short Direct Paths
 - By-pass insulated cavity
 - Most of whole house BE leakage
 - Effects: Thermal > Moisture
 - If any air moves into the insulated cavity, mo multiplied
- Long Indirect Paths
 - Flow through insulated cavity
 - Less flow than through direct paths
 - Effects: Moisture > Thermal

- Air barrier
 - Materials 0.02 L/sm² @75Pa
 - Assemblies 0.2 L/sm² @75Pa
 - Systems 2.0 L/sm² @75Pa
- Exponent n=?
 - Needed for estimating the flow at building pressures
- These simulations used n=0.5 which gives the highest flow rates at low pressures (safety factor for design)

- Assume
 - 30ft x 40ft two story building
 - Average ceiling height 8.5ft
 - Walls and roofs leak the same 0.2 L/sm²@75Pa
 - Flow characteristic n=0.65 or n=0.5 (Q=C*dpⁿ)

L/sm ² @75	0.2	0.4	0.6
cfm/ft ² @75	0.04	0.08	0.16
n=0.65			
cfm/ft ² @50	0.031	0.061	0.123
L/sm ² @50	0.154	0.307	0.461
ach50	0.32	0.64	0.95
n=0.50			
cfm/ft ² @50	0.033	0.065	0.131
L/sm ² @50	0.163	0.327	0.490
ach50	0.34	0.68	1.01

For all the worldy units

Vinyl 19 mm cavity WRB OSB 10 in Insulation Gypsum Paint 10 perms

North Orientation... mostly exfitration

Start Time 1 Oct. 2075

- Loads were calculated assuming
 - 9 L/d moisture production (20 lb/d) (SPC160, 2 bdr)
 - 500 m³ house volume (17553 cf)
 - ach=0.25 (leakage and occupancy effects)
- These result in moisture load of +3 g/m³ when no dehumidification by cooling system

Old and new SPC160 moisture loads. Average house size f(#bdr) considered.

- Predicted maximum Mold Growth Index after exposure to indoor/outdoor weather
 - Layers included: WRB and everything inwards

Results – Houston (-5Pa) – Max Mold

- Flow rate (rating at 75Pa): 0, 0.2, 0.4, 0.6 L/sm²
- Mechanical underpressure 5 Pa

More air, higher Mold

Note: No vapor retarder in Houston

- Flow rate (rating at 75Pa): 0.6 L/sm²
- Mold growth mostly not at the flow path

• Flow rate (rating at 75Pa): 0, 0.2, 0.4, 0.6 L/sm²

• Examples of airflow effect on relative humidity inside the wall

Air leakage comparison

Stack neutral plane at the bottom of the wall below rim joist

Minneapolis

Minneapolis

Minneapolis

- Airflow exfiltrates or infiltrates through the wall
- Heat loss due to air flow
 - E=Qv*rho*cp* Δ T where
 - $\Delta T = Tin-Tout$, if exfiltrating
 - $\Delta T = Tin-Tair@surface, if infiltrating$
 - Tair@surface = air temperature at entrance to indoors at the wall surface
 - Airflow affect the conduction heat loss by exchanging heat with the wall
- Yearly sum of conduction heat loss and air heat loss

Conduction + Air Leakage

Conduction + Air Leakage

Conduction + Air Leakage

Conduction + Air Leakage

- The wall is a heat exchanger
 - Air flow through the wall gives a small heat recovery
- Compare total heat loss
 - 1. Walls with air leakage
 - Airtight walls with the same air flow rate taken directly from outside
 - No HRV
 - With HRV (efficiency=?)

 What air heat recovery efficiency does case (2) need in order to provide the same heat loss as case (1)?

- More airflow means more heat flow
 - The question is whether the air flow is part of designed ventilation or uncontrolled (unwanted) air exchange
 - Uncontrolled flow not wanted and causes extra heat loss
 - If considered part of the house ventilation: Does the house have a HRV/ERV?
- Air that filtrates slowly through the insulating parts provides heat recovery benefits
- The higher the airflow rate per wall U-value, the lower the relative benefits (heat recovery)
- Air flow going through short cracks or openings provides low heat recovery effects

- All layers included
- Only difference is the air leakage rate

- Moisture performance (mold)
 - Standard walls (OSB exterior sheathing) have to be airtight at or below current assembly air tightness requirements (0.2 L/sm² / 0.04 cfm/sqft @ 75Pa) to reduce risk for mold growth
- Energy performance
 - At 0.2 L/sm²@75Pa rating the airflow through the walls increases the heat loss (combined conduction plus air) by roughly 25%
 - Flow through insulated cavities can provide some heat recovery, however
 - Flow path cannot be controlled, short circuiting will not provide heat recovery

Disclaimer: Results are not to be generalized and are valid only for the simulated structures

- Study the impact of low air leakage rates on the moisture performance of alternative wall structures such as with exterior continuous insulation
 - Risk reduction factors

- A big step forward in our analysis capability for air flow. Never done before to this level.
- Component air leakage testing with STATISTICS (mean values and spread) would be very useful to create libraries were each air sealing system would be documented.
- New testing apparatus like Owens Corning, TREMCO, ORNL and BSC can provide hard core data to create series and parallel resistance models for airflow calculations in envelopes.
- Revisit the analysis with OC measured data.

