

James Ortega - <u>James@passivehouse.us</u> Lisa White – <u>Lisa@passivehouse.us</u>

PHIUS

PASSIVE BUILDING PRINCIPLES

PHIUS+2015

A performance based passive building standard with prescriptive requirements. Energy Energy Efficiency & Energy Renewable Energy **Climate-Specific** Passive Building Standards Graham S. Wright and Katrin Klingenberg July 2015

TARGETS for 1000+ CLIMATES

PHIUS+2018

A performance based passive building standard with prescriptive requirements.

PHIUS+ 2018 Space Conditioning Criteria Calculator							
METHOD:		CALCULA	FOR •				
UNITS:		IMPERIAL	(IP) •				
STATE / PROVINCE		ILLINOIS	•				
CITY		CHICAGO MID	WAY AP 🔻				
Envelope Area (ft²) / iCFA (ft²)	1.10	or enter here:					
iCFA (ft²) / person	405	or enter here:					
*Calculator method is used for officia Space C	al certificati Conditionin	on targets. ng Criteria					
Annual Heating Demand	9	4.6	kBTU/ft²yr				
Annual Cooling Deman	d	2.9	kBTU/ft²yr				
Peak Heating Load		4.3	BTU/ft ² hr				
Peak Cooling Load		2.2	BTU/ft ² hr				

MAIN CERTIFICATION REQUIREMENTS

SPACE CONDITIONING TARGETS

• Based on cost optimization analysis

• Vary based on climate, occupant density, and envelope/floor area ratio

AIR-TIGHTNESS

- 0.06 CFM50/ft2 envelope area
- Required limit set based on building durability. Pass/Fail.

ON-SITE QUALITY ASSURANCE TESTING/INSPECTION

- Ensure quality for elements not reflected in energy modeling
- Required for all projects

NET SOURCE ENERGY TARGET

• Used instead of site energy as a better proxy for carbon emissions

• Target and renewable energy offsets vary based on program version

SPACE CONDITIONING TARGETS

Annual Demand [kBTU/yr.ft²]: Space conditioning energy consumed over the course of the year, delivered by the equipment to the space. Annual Heating Demand ≤ A (kBTU/ft2.yr) Annual Cooling Demand ≤ B (kBTU/ft2.yr)

Peak Load [BTU/hr.ft²]: Space conditioning requirement during the peak climate conditions (average over the worst 24 hours). Determines the size of the mechanical system.

Peak Heating Load \leq C (BTU/ft2.hr) Peak Cooling Load \leq D (BTU/ft2.hr)

MUST MEET ALL 4! Different advantages for each:

- Low **annual demand** saves energy and operating cost
- Low **peak loads** ensure comfort, resilience, and reduce mechanical system size

METHODOLOGY

Setting Cost Competitive Space Conditioning Criteria

Cost optimal sweet-spot for investment in conservation

SPACE CONDITIONING TARGETS VARY BASED ON

BUILDING SIZE AND OCCUPANT DENSITY

Passive House Institute 05 2015

SPACE CONDITIONING TARGETS

VARY BASED ON

BUILDING SIZE AND OCCUPANT DENSITY

AIR-TIGHTNESS

Passing test results (pressurization & depressurization) required for certification.

 $0.060^* \text{ CFM}_{50}/\text{ft}^2 \text{ envelope area}$ $0.080 \text{ CFM}_{75}/\text{ft}^2 \text{ envelope area}$

*For buildings 5+ stories of non-combustible construction 0.080 CFM₅₀/ft²envelope or 0.110 CFM₇₅/ft²envelope.

Figure 10. Predicted Mold Index at air tightness ratings 0.01, 0.02 and 0.04 cfm/sqft (left to right). Whole assemble maximum mold index. Houston, TX. © Passive House Institute US 2019

ON-SITE QUALITY ASSURANCE TESTING/INSPECTION

- Built on US recognized systems (DOE, EPA IAP, RESNET)
- 3rd Party inspection process
- Multiple site visits
- Blower door testing
- Ventilation system balancing/commissioning
- Insulation inspection

Critical for success. Provides assurance that the built product is what was planned.

DOE HIGH PE **STAIRCASE**

IECC 2009 Enclosure

> HERS 85-90

> > IECC 2009

RFO	RMAN	CE			Source Zero Renew- able Energy System
				Balanced Ventilation HRV/ERV	Balanced Ventilation HRV/ERV
			SOLAR READY Depends on climate	SOLAR READY ALWAYS	SOLAR READY ALWAYS
			Eff. Comps. & H2O Distrib	Eff. Comps. & H ₂ O Distrib	Eff. Comps. & H ₂ O Distrib
			A EPA Indoor airPLUS	ePA Indoor airPLUS	EPA Indoor airPLUS
			Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
	HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC QI
	Water Management	Water Management	Water Management	Water Management	Water Management
	Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERO ZERH	PHIUS PHIUS+	+C PHIUS+ SourceZero
	(C) Passive House	Institute US 2019	an Alkerster State		

NET SOURCE ENERGY

SOURCE ENERGY OFFSETS

For PHIUS+ 2018 and Source Zero, all of the following renewables are recognized as offsets:

Type	Offset Factor (CRE)
On-Site Photovoltaic Array	1
Directly Owned Off-Site Renewable	1
Community Renewable Energy	1
Virtual Power Purchase Agreements (PPA)	1
Green-E Certified Renewable Energy Certificates (RECs)	0.2

1 kWh of renewable energy generated offsets *2.8 kWh/1.96 (US/Canada) at the source when the offset factor is 1.

PHIUS+ SOURCE ZERO

Building must generate as much energy as it uses on an annual, source-energy basis.

Net Source Energy Target: 0!

For an all electric building \rightarrow Site Zero = Source Zero

CERTIFICATION BASED ON MODELED USE

TWO PART CERTIFICATION: PRE-CERTIFICATION: Design Stage FINAL CERTIFICATION: On-Site QA

OTHER REQUIREMENTS

PHIUS WINDOW COMFORT & CONDENSATION RISK ASSESSMENT

PHIUS+ Climate Data

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ambient Temp (°F)	26.6	31.1	38.8	47.5	58.8	66.0	74.1	71.1	64.6	54.0	43.3	36.0
Dewpoint (*F)	13.8	17.4	24.6	35.1	47.1	54.1	60.6	61.0	53.2	41.7	33.4	23.0

CONDENSATION RISK

ISO 13788 Calculation for Low Thermal Inertia Elements

http://ashrae-meteo.info/

TRUE	Is this a Heating Climate?
TRUE	Use simple method for indoor humidity?
TRUE	High occupancy?
0.4	U-value of window frame/glass [BTU/hr.ft ² .F]
15%	Safety Factor
49.4	Interior Surface Temperature of window frame/glass [⁰ F]
YES	Risk of condensation on interior surface acceptable?
0.64	Critical fRsi
JAN	Critical Month
84	Critical CDE Dation

COMFORT REQUIREMENTS

Applies to all projects.

Windows >10' in height and above have the same required U-value.

Window Vertical Height (ft) - Use slider

Required Whole Window U-value [BTU/hr.ft².F]

OTHER REQUIREMENTS

Moisture Control in Assemblies

<u>Must</u> follow prescriptive requirements OR Pass by simulation in WUFI Pro.

Appendix B – Moisture Control Guidelines

Excerpted from Straube (2012). [42]

3.4.1 Vapor Control Recommendations

Different types of assemblies have different vapor control requirements. Although the requirements can be developed through rational engineering analysis, a simplified summary of recommendations, many from the "I" codes, is presented below.

PHIUS+ 2018 FEASIBILITY

Orchards at Orenco II & 124th & Ash

Units: 58 Bedrooms: 72 iCFA: 46,150 sf Units: 175 Bedrooms: 103 iCFA: 98,700 sf

PHIUS+ 2018 FEASIBILITY

Packaged combinations that would work to achieve PHIUS+ 2018 performance targets. <u>Not</u> prescriptive.

		Orchards II - PHIUS+ 2018 124th & Ash - PHIUS+ 2018									
LOCATION		LOS ANGELES	NYC	PORTLAND	CHICAGO	MINNEAPOLIS	LOS ANGELES	NYC	PORTLAND	CHICAGO	MINNEAPOLIS
CLIMAT	TE ZONE	3	4A	4C	5	6	3	4A	4C	5	6
ROOF (R-Value)	35	70	60	70	70	30	70	60	70	70
WALLS (R-Value)	20	35	30	35	40	25	35	30	35	35
SLAB (R-Value) 1		1	15	4	10	20	2	10	10	10	20
WINDOWS	U-VALUE	0.33	0.167	0.25	0.2	0.167	0.3	0.28	0.28	0.26	0.23
	SHGC	0.3	0.3	0.3	0.3	0.3	0.35	0.35	0.35	0.35	0.35
ERV Recove	ry Efficiency	70%	80%	70%	80%	80%	80%	80%	80%	80%	80%
COMMON I REDU	LIGHTS (10% CTION)	-	x	-	x	x	-	-	-	-	-
P	Ŷ	33,000	69,000	65,000	81,000	87,000	140,000	220,0 00	220,000	280,000	320,000
Array Size (kW) 20 55 60 65 70 90 175		175	200	225	255						

ORCHARDS AT ORENCO I *Hillsboro, OR* 57 units 54,700 ft²

Central HVAC ERVs w/Ducted Heat+Cool Gas Water Heating Unit Meter & Common Meter

Site Energy: Monitored vs PHIUS+ 2015 Predicted

STELLAR APARTMENTS

Eugene, OR 6 units 5,488 ft²

 8 Meters per unit
No common spaces
Electric Heating
No Cooling
Heat Pump Water Heaters in outdoor mech closet

STELLAR APARTMENTS

[©] Passive House Institute US

© Passive House Institute US

BAYSIDE ANCHOR Portland, ME

45 Units 36,161 ft²

Electric heating, no cooling Gas Water Heating Gas Exhaust Dryers All other electric

BAYSIDE ANCHOR

Beach Green Dunes Far Rockaway, NY 101 units 107,800 ft² **Central VRF** In-Unit ERVs **Gas Water Heating Central Laundry** CHP

Total energy use v in Btu per square foot v

BEACH GREEN DUNES

≑ Name	▼Full-Year Sum	
43-06 63rd St	91.8k*	\checkmark
Flushing Steam Buildin	85.8k*	\checkmark
140-74 34th Avenue	84.8k*	\checkmark
138-49 Barclay Avenue	77.6k*	\checkmark
95-11 64th Rd	75k	\checkmark
28 Gilchrest Rd	74.2k*	\checkmark
141-28 84th Drive	73.7k*	\checkmark
Austin St	70.5k*	\checkmark
113th St	69.1k*	\checkmark
99-22 67th Rd	63k*	\checkmark
Kew Gardens	61.7k*	\checkmark
140-26 Franklin Avenue	60.5k*	\checkmark
9 Chelsea Place	50.9k*	\checkmark
193-04 Horace Harding	48.9k*	\checkmark
90-11 160th St	41.7k	\checkmark
65-54 Austin St	32.7k	\checkmark
BGN	22.6k*	\checkmark

BEACH GREEN DUNES

Differences Ventilation & Airtightness

BEACH GREEN DUNES

≑ Name	Full-Year Sum	
140-74 34th Avenue	84.8k*	
138-49 Barclay Avenue	77.6k*	
95-11 64th Rd	75k	
28 Gilchrest Rd	74.2k*	
141-28 84th Drive	73.7k*	
Austin St	70.5k*	
113th St	69.1k*	
99-22 67th Rd	63k*	
Kew Gardens	61.7k*	
140-26 Franklin Avenue	60.5k*	
9 Chelsea Place	50.9k*	
193-04 Horace Harding	48.9k*	
90-11 160th St	41.7k	1
65-54 Austin St	32.7k	\checkmark
BGN	22.6k*	\checkmark

WEGOWISE BUILDING YANMAR BUILDING

LG VRF TENANT ELECTRIC BILLS PHOTOVOLTAICS

WEGOWISEBUIL INGYANMARELEC RIC BILLS

89% Modeled vs Actual

SINGLE FAMILY CASE STUDIES

MADRONA 89% Modeled vs Actual

Type: Single family Occupants: 4 Location: Seattle, WA CPHC: Dan Whitmore

1236 - Electric Consumption (kWh)

[©] Passive House Institute US

MADRONA

COTTLE ZEH

99% Modeled vs Actual

Type: Single family Occupants: 3 Location: San Jose, CA CPHC: Allen Gilliland

[©] Passive House Institute US

[©] Passive House Institute US

COTTLE ZEH

GEORGE RESIDENCE

70% Modeled vs Actual

Type: Single family Occupants: 4 Location: Oak Park, IL CPHC: Tom Bassett-Dilley

BERKS / SOEDER

72% Modeled vs Actual

Type: Single family Occupants: 6 Location: Scranton, PA CPHC: Richard Pedranti

MOSKOWITZ PASSIVE HOUSE

79% Modeled vs Actual

Type: Single family Occupants: 3 Location: Teaneck, NJ CPHC: Christine Liaukus Malka Van Bemmelen

1054 - Electric Consumption (kWh) 2,500 2,000 1,500 1,000 500 (500)Μ S Ν D N D Μ Α Μ A S O N D F Μ A M \cap Α \mathbf{O} F J 2016 2017 2018 Measured --- Modeled Net Measured w/ PV © Passive House Institute US

EAST LAWRENCE PH

88% Modeled vs Actual

Type: Single family Occupants: 3 Location: Lawrence, KS CPHC: Ryan Abendroth

LOUGHRAN RESIDENCE

93% Modeled vs Actual

Type: Single family Occupants: 4 Location: Illinois CPHC: Ryan Abendroth

THE ROCKPILE

103% Modeled vs Actual

Type: Single family Occupants: 2 Location: Dubuque, IA CPHC: Shane Hoeper

1225 - Electric Consumption (kWh)

OWL HAVEN

107% Modeled vs Actual

Type: Single family Occupants: 3 Location: Langley, WA CPHC: Robert Moore

CHRISTIANSON 108% Modeled vs Actual

Type: Single family Occupants: 5 Location: Corvallis, OR CPHC: Jan Fillinger, Win Swafford

Type: Single family Occupants: 3 Location: Eugene, OR CPHC: Win Swafford Jan Fillinger

ORCHARD ST

116% Modeled vs Actual

ANCHOR BAY 128% Modeled vs Actual

Type: Single family Occupants: 4 Location: Gualala, CA CPHC: Graham Irwin

KARPIAK MULHALL

130% Modeled vs Actual

Type: Single family Occupants: 4 Location: Scranton, PA CPHC: Richard Pedranti

93% Modeled vs Actual

