Airflow Control No. 2/79

Overview of Presentation Why control airflow? Vapor flow? Review of Driving Forces Air Barrier Systems Functions + Requirements Airflow Within Enclosures convective loops, windwashing, pumping

- Air Leakage Condensation – Control Strategies
- Tall Buildings

Building Science

Airflow Control: Why Airflow Control: What? 1. Comfort and Health · Air flow through enclosure _ Drafts - Code requirement? - Odors, particles, gases If you can't enclose air, · Air flow within enclosure 2. Moisture control vou can't condition it - Air loops inside enclosure - air leakage condensation - Air loop from interior and back 3. Energy – Air loop from exterior and back Heat transferred with air Therefore, CONTROL 4. Sound - = Limit or eliminate air flow through and within 5. Required by some codes Building Science Building Science Airflow Control No. 3/79 Airflow Control No. 4/79

1. Wind

Building Science

- Peak loads are high (>1000 Pa/20 psf)
- Average pressures much lower (<50 Pa)
- Wind Pressure Increases with Height
 - low-rise average pressure about 5 Pa
 - twenty story building about 40 Pa on normal day

Airflow Control No. 7/79

4 of 19

Airflow Control No. 18/79

Driving Forces Summary

- Wind
 - Taller buildings see high pressures!
 - 2-10 Pa low bldgs, 30-200+ Pa tall buildings
- Stack Effect
 - Pressure increases directly with temperature difference and height
- HVAC

Building Science

- Depends on design and operation

Building Science 2008

Airflow Control No. 19/79

Air Barrier Systems

- Function: to stop airflow through enclosure
- ABS can be placed anywhere in the enclosure
- Must be strong enough to take wind gusts (code requirement)
- Many materials are air impermeable, but most systems are not airtight

Air Barrier Systems: Requirements

- Continuous
 - primary need, common failure
- Strong
 - designed for full wind load
- Durable
 - critical component repair, replacement
- Stiff
 - control billowing, pumping
- Air Impermeable
 - (may be vapour permeable)

Building Science .com

Air Barrier Requirements

- · Air impermeability
 - Material: 0.02 lps/m² @ 75 Pa 0.004 cfm / ft² at 0.3" wg
 - $\ Component: \ 0.2 \qquad Ips/m^2 \ @ \ 75 \ Pa \ \ 0.04 \ cfm \ / \ ft^2 \ at \ 0.3" \ wg$
 - Building: 2.0 lps/m² @ 75 Pa 0.4 cfm / ft² at 0.3" wg
- <u>Building</u> requirement most important for energy, interior RH, IAQ
- <u>Component</u> requirement *may* matter for air leakage <u>condensation</u> control

Building Science 2008

Building Science

Airflow Control No. 36/79

Airflow Control No. 34/79

Airflow Control No. 35/79

Windwashing Need some airtightness outside <u>air</u> <u>permeable</u> insulation Sealed housewrap, attached building paper Sheathing sealed with tape

- both OSB and insulated sheathing
- high density MFI?
- High density cavity insulation

 some foams, maybe dense cellulose

Building Science 2008

Airflow Control No. 48/79

Conclusions

- Design, draw and spec a continuous air barrier!
- Some airtightness on <u>both</u> sides of air permeable insulation!
- Control driving forces
 - pressurization
 - temperature (insulated sheathing)
- Beware flow within enclosures/buildings – compartments, stiff air barriers

Building Science .com

Airflow Control No. 74/79