

SUGGESTIONS

- 1. Do what Joe says. Or else.
- 2. Turn your cell phone ringers off.
- 3. Hold your questions until the end or refer to No. 1.
- 4. Watch for the "Quirkiness Alerts."
- 5. Sit back and relax.

ROCK VS. STONE

Rock is...

...a naturally occurring aggregate formation of minerals and chemicals.

Stone is...

...rock that is manipulated for a specific use or purpose.

ROCK VS. STONE

Rock is...

- A. ...a popular music genre.
- B. ...an action movie actor and reality TV show host.
- C. ...a naturally occurring aggregate formation of minerals and chemicals.

Stone is...

...rock that is manipulated for a specific use or purpose.

ROCK CLASSIFICATION - IGNEOUS

- Originated from magma (molten rock)
- Examples: granite, diorite, gabbro, all very common cladding

ROCK CLASSIFICATION - SEDIMENTARY

- Deposition, compaction, and cementation
- Weathered/eroded rocks and minerals
- Shells and other fossil-forming organisms
- Precipitated minerals
- Often a combination of all of the above
- Examples: Sandstone, Shale, Limestone, Dolomite, Travertine

ROCK CLASSIFICATION - METAMORPHIC

- Original rock altered by exposure to temperature, pressure.
 - Realignment of minerals
 - Recrystallization
 - Chemical alteration
- Metamorphosed igneous: gneiss or schist
- Metamorphosed sedimentary: slate, quartzite, and marble

STONE BUILDING SYSTEM DEFINITIONS

- Full thickness of the wall.
- Load Bearing Structural
- Thick Cladding
- Greater than 2 inches thick.
- Does not support building loads, but can be stacked.
- Thin Cladding
 - 2 inches or thinner.
 - Does not support building loads.
- Paving
 - Thickness varies with application/ system.
- Load bearing always.

STONE INDUSTRY REFERENCES

- Indiana Limestone Institute (ILI) Handbook
 http://www.iliai.com
- Marble Institute of America (MIA) Design Manual
 http://www.marble-institute.com
- National Building Granite Quarries Association (NBGQA)
 Specification

http://www.nbgqa.com

 Tile Council of North America (TCNA) Handbook for Ceramic Tile Installations

http://www.tileusa.com

European Standards

<section-header>

STONE SELECTION CONSIDERATIONS

- Stone Availability/Orientation
- Stone Fabrication
- Bedding Planes, Veins, and Rift
- Material/Structural Properties
- Primary Structure
- Loading Conditions (at grade, at elevation)
- Back-up Material/System
- Serviceability

Stone Availability/Orientation

- Limestone (typically >2 inches for cladding)
- Sandstone (typically >2 inches for cladding)
- Granite
- MarbleTravertine
- Traverur
 Slate

Stone Fabrication

- Stone Finish Material Properties
- (Strength, Absorption)
- Slip Resistance
- Staining
- Dirt Retention/Cleaning
- Tolerances

Sandstone Class II (Quartzitic)

Travertine Class I (Exterior)

Travertine Class II (Interior)

Sandstone Class I

Joint Widths

Material/Structural Prop	erties	
Stone Flexural Strength Comp	arison - AS	<u>FM C880/C99</u>
Granite	C880	1200 psi
Marble	C880	1000 psi
Limestone Class III (High Density)	C99	1000 psi
Limestone Class II (Med. Density)	C99	500 psi
Limestone Class I (Low Density)	C99	400 psi
Sandstone Class III (Quartzite)	C99	2000 psi

C99

C99

C880

C880

1000 psi

350 psi

1000 psi

700 psi

Material/Structural Properties

- Engineering Properties Actual (Near-term)
- Flexural Strength (ASTM C880)
- Compressive Strength (ASTM C170)
- Modulus of Rupture (ASTM C99)
- Specific Gravity (ASTM C97)
- Absorption (ASTM C97)
- **Engineering Properties** • Predictive (Long-term)
 - Accelerated Weathering Test
- Petrographic Analysis (ASTM C1721)
- Prior Use and Experience Test both wet and dry...

Material/Structural Properties

Variability

 Between Different Stone Classifications

Material/Structural Properties Bedding Planes, Veins, and Rifts

- Material Properties
- Flexural Strength
- Absorption
- Weathering/Erosion
- Discoloration

Material/Structural Properties Strength Loss due to Weathering

Material/Structural Properties Strength Loss due to Weathering Accelerated Weathering

Material/Structural Properties Strength Loss due to Weathering **Real Time Weathering** 100 80 70-60-50-Danby Marble 40-8 1 2 3 4 5 6 7

Material/Structural Properties Durability

- Material Characteristics (Voids, Veining)
- Density
- Absorption
- Compressive Strength
- Abrasion Resistance

Material/Structural Properties Durability

Physical Properties Relevant to Stone Durability

Testing Standard	Physical Property	Granite	Marble*	Travertine**	High Density Limestone	Medium Density Limestone	Low Density Limestone
ASTM C97	Absorption by Weight, Max. (%)	0.40	0.20	2.50	3.00	7.50	12.00
ASTM C97	Density, Min. (lb/ft³)	160	162	144	160	135	110
ASTM C170	Compressive Strength, Min. (Ib/in ²)	19,000	7,500	7,500	8,000	4,000	1,800
ASTM C241	Abrasion Resistance, Min. (Ha)	25	10	10	10	10	10
Per ASTM C615, * For classificatio ** For exterior ap	, C503, C568, and C1527 on I, caloite oplications						

Material/Structural Properties Durability

Physical Properties Relevant to Stone Durability

Testing Standard	Physical Property	Granite	Marble*	Travertine**	High Density Limestone	Medium Density Limestone	Low Density Limestone
ASTM C97	Absorption by Weight, Max. (%)	0.40	0.20	2.50	3.00	7.50	12.00
ASTM C97	Density, Min. (lb/ft³)	160	162	144	160	135	110
ASTM C170	Compressive Strength, Min. (Ib/in ²)	19,000	7,500	7,500	8,000	4,000	1,800
ASTM C241	Abrasion Resistance, Min. (Ha)	25	10	10	10	10	10
Per ASTM C615	Per ASTM C615, C503, C568, and C1527						
* For classification	on I, calcite						
** For exterior applications							

Material/Structural Properties Durability

Physical Properties Relevant to Stone Durability

Testing Standard	Physical Property	Granite	Marble*	Travertine**	High Density Limestone	Medium Density Limestone	Low Density Limestone
ASTM C97	Absorption by Weight, Max. (%)	0.40	0.20	2.50	3.00	7.50	12.00
ASTM C97	Density, Min. (lb/ft³)	160	162	144	160	135	110
ASTM C170	Compressive Strength, Min. (lb/in ²)	19,000	7,500	7,500	8,000	4,000	1,800
ASTM C241	Abrasion Resistance, Min. (Ha)	25	10	10	10	10	10
Per ASTM C615, C503, C568, and C1527 * For classification I, calcite * For exterior applications							

Material/Structural Properties Durability

Material/Structural Properties

Durability

- Attractive characteristics are not always good.
- Concessions regarding durability may need to be accepted by the project team for certain stone types in certain applications.
- Whatever you think the in-service conditions will be, they will be worse.

Material/Structural Properties

Sealant Stain Resistance

- ASTM D2203, "Standard Test Method for Staining from Sealants"
- Changes in Formulation
- Primer Influence
- Cleaning
- An old problem...

Material/Structural Properties Salt Crystallization Resistance

Material/Structural Properties Color Changes

- Weatherization Chamber Testing (Accelerated Aging)
- ASTM C 1721, "Standard Guide for Petrographic **Examination of Dimension Stone**"

Primary Structure

- influence cladding performance.

- Reflective Cracking

Loading Conditions Paving • Dynamic Loads • Pedestrian • Vehicular • Static Loads • Planters • Bollards • Threat Protection Barriers • Impact Loads

Back-up Material/System Cladding

- Material Type
- Attachment to primary structure.
- Integrity/consistency of material.
- Stiffness Compatibility
- Ability to manage water entry (flashing).
- Construction
 tolerances in back-up.

Back-up Material/System

Paving

- Material Type
- Attachment to primary structure.
- Integrity/consistency of material.
- Stiffness
- Ability to manage water entry (waterproofing system).
- · Construction tolerances in back-up.

Serviceability/Maintenance Cladding

- Weather Resistance
- Repair/Replacement/ Maintenance (attic stock)
- Resistance to Soiling/Ease
 of Cleaning
 - Run-down Staining

Serviceability/Maintenance Paving

- Repair/Replacement/ Maintenance (Attic Stock)
- Resistance to Soiling/Ease of Cleaning
- Weather Resistance
- Drainage (Lack of Ponding)
- Impact Resistance
- Chemical Resistance
- Slip Resistance

STONE DESIGN PROCESS OVERVIEW

- Pre-design
 - Review Available Test Data
 - Preliminary Stone Selection
 - Preliminary System Selection
- Design
- Assumed Physical Properties
 based on Available Test Data
- Production Testing
 - Confirm stone meets project requirements...
 PRIOR TO DELIVERY!
- Confirm Design
- Actual Material and Structural Properties

Safety Factors

- Considerations that safety factors take into account:
 - Variability of Load
 - Workmanship
 - Stress Concentrations
 - Construction Tolerances
- Fabrication Tolerances
- Variability of the StoneStrength Loss Due
- to Weathering

Safety Factors

- Most Commonly Accepted Approach:
 Recommendations of the Various Stone Trade Groups
 - Empirical
 - Allowable Stress Design
- · Other methods are used to develop factors of safety for dimension stone design:
 - Variability of Strength
 - Characteristic Strength (3.0 X 95% strength)
 - Load Application Accuracy
 - Load and Resistance Factors

Safety Factors - Values

Recommended Industry Standard Safety Factors for Design of Stone Cladding

Organization	Stone Type	Safety Factor (Bending)	Safety Factor (Connection Zones, Concentrated Loads)
National Building Granite Quarriers Association	Granite	3	4
Marble Institute of America	Granite (<50mm)	3	4
	Granite (>50mm)	3	3
	Marble	5	5
	Slate	5	5
	Limestone	8	8
	Sandstone	8	10
Indiana Limestone Institute	Limestone	8 (6)*	8

Safety Factors - Values

Recommended Industry Standard Safety Factors for Design of Stone Cladding

Organization	Stone Type	Safety Factor (Bending)	Safety Factor (Connection Zones, Concentrated Loads)			
National Building Granite Quarriers Association	Granite	3	4			
	Granite (<50mm)	3	4			
Marble Institute of America	Granite (>50mm)	3	3			
	Marble	5	5			
	Slate	5	5			
	Limestone	8	8			
	Sandstone	8	10			
Indiana Limestone Institute	Limestone	8 (6)*	8			
*Transient Loads (i.e. wind, seismic)						

STONE CLADDING SYSTEM DEFINITION

- Typically individually supported.
- Does not support building loads.
- Flexural loading controls.
- Joints may be filled with sealant or mortar.

STONE CLADDING DESIGN OBJECTIVES

- Transfer applied loads to primary structure.
- Weather Resistant
- Durable
- Attractive
- Innovative

STONE CLADDING SUPPORT SYSTEMS

- Individual Anchors
- Proprietary Systems/Individually Anchored
- Strongback Truss
- Stone-faced Precast Concrete

STONE CLADDING DESIGN RESPONSIBILITIES

- Architect
 - · Monitor/participate in stone cladding design process.
 - Provide a basis of design concept.
 - Anticipate cladding interaction with other building systems.
 - · Identify known critical interface conditions.
- Engineer
 - Back check applied cladding loads against design assumptions.
- Contractor
 - Coordinate cladding installation requirements with other trades.
- Stone Subcontractor
 - Provide basis of design concept or fully coordinated alternate system.
- Specialty Engineer
- Retained by Stone Subcontractor
- Provide final cladding design based on actual physical properties.

BASICS OF STONE CLADDING DESIGN

- Safety Factors
- Stone Capacity
- Common Anchor Types
- Anchor/Stone Interaction
- Fabrication Tolerances

Perform separate analyses of stone and anchors, but evaluate interactivity

COMMON STONE ANCHOR TYPES

- Edge Supported
- Back Surface-mounted

Edge-supported Anchors Discontinuous Kerf Anchors

• SEALANT installed between anchor and stone.

Back Surface-mounted Anchors H and J Clips

ANCHOR/STONE INTERACTION

- Hand Calculations
- Finite Element Modeling
- Pre-construction Testing
 - Small Scale Load Testing of Individual Elements
- Full Scale Assembly Testing
- ASTM C 1354

CONDITIONS TO AVOID

- Excessive stress concentrations (sharp kerf cuts, complex panel shapes).
- Corrosive materials in contact with stone.
- Difficult installations (i.e., blind connections).
- Excessive gravity loads (i.e. stacking).

CONDITIONS TO AVOID (cont'd)

- Complex load paths.
- Long spans.
- Overhead conditions.
- Un-accommodated volume changes.
- Anchor/back-up systems with differing stiffness.

UNIQUE DETAILING CONDITIONS

- Interface Conditions
- Building Expansion Joints
- Excessive Shimming/Wide Cavities
- Non-horizontal/Non-vertical Joints
- Overhead Conditions

Interface Conditions

Includes:

- Ground
- Windows
- Doors
- Roofs
- Critical for air and water management, plus differential movements.

Expansion Joints

- Accommodate movements due to:
 - Expansion/Contraction of Stone
- Structural Loading
- · Movements of the Back-up
- Assess Overall Structural Design

Excessive Shimming/Wide Cavities

- Should compensate for tolerances, not mistakes.
- Use hard, durable materials.
- Permanent vs.
 Temporary
- Size
- Stacking/Stability

Non-horizontal/non-vertical Joints

- Asymmetric Loading
- Anchor Orientation
- Avoid Stone Restraint

Overhead Installations

- Avoid Chemical Anchors
- Constant Loading
- Over-design Anchorage

INTERIOR INSTALLATIONS

- Format size affects competence of installation.
- Adhesion reliability is proportional to panel size.
- Mechanical anchorage where possible.
- Installation controls strength requirements.
- Quality control to assess mortar coverage is critical.
- Back-up stiffness and plumbness influences installation.

· Pavers

- Stone, Precast Concrete, Ceramics, Brick
- Joint System
 - Grout (a.k.a. Mortar) or Sealant
- Support System
 - Sand, Asphalt, Mortar, Pedestals
- Drainage Provisions
- Slope, Drains, Scuppers
- Waterproofing (if over occupied space)
- Hot Fluid-applied, Cold Fluid-applied, Sheets-applied
- Substrate
- Post-tensioned Concrete, Cast-in Place Concrete, Slabs on Grade

Support Systems

Sand-set

- Well Graded Sand for Drainage
- Constant Sand Depth
- Restraint at Perimeters
- · Sand-filled Joints
- Frequent Maintenance
- Limited to Small Formats

Support Systems

Pedestal-set

- Relies on stone strength.
- Thickness depends on span.
- Can be placed level.
- Debris can fill joints and limit drainage.
- Can be used with or without sealant in joints.
- Occasional Maintenance
- Mark drains for cleaning.
- Water WILL collect on surface.

BASICS OF STONE PAVING DESIGN

- Paver Durability
 - Appropriate & Inappropriate Materials for Exterior Applications
- Drainage
 - Above and Below-Grade Drainage Considerations
- Accommodation of Movement
 - Expansion Joint Frequency, Location, and Detailing
- Joint Material Selection
 - Appropriate & Inappropriate Materials and Mix Designs
- Loading Conditions
 - Static and Dynamic Loads

Paver Durability

- Material Characteristics (Voids, Veining)
- Density
- Absorption
- Abrasion Resistance
- Compressive Strength

2 Deale

Drainage

- Primary Drainage at Grade
- Secondary Drainage at Waterproofing Level

Drainage

- Water storage within the system should be limited, particularly in insulated systems.
- Maintenance is critical to ensuring performance of the installed drainage system.
- Secondary at Trench Drains

Drainage

Drainage Mats

- Provides paths for water flow at the membrane level.
- Ensure water can drain from the drainage mat, i.e. sufficient slope and drains.
- Slope is still necessary to promote drainage.
- Use appropriate product for compressive loads anticipated.
- Use in conjunction with protection board to avoid clogging and membrane damage.

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Movement

- ILI Recommends joints, but does not provide specific direction.
- MIA References TCNA for specific recommendations.
- TCNA References Method EJ171 in the TCNA Handbook.
- What is good for ceramic tile is good for Stone?

Movement TCNA Handbook - Method EJ171 Spacing – 8 ft. to 12 ft. in Each Direction. Minimum Joint Width of 3/8 in. for 8 ft. Spacing Minimum Joint Width of ½ in. for 12 ft. Spacing Increase Joint Width by 1/16 in. for Every 15° F. Greater than 100° F. Temperature Variation

Movement

- TCNA Handbook Method EJ171
 - Exposed plazas in the northern U.S. typically require ¾ in. joints at 12 ft. o.c.
 - Architect/Engineer must ensure the adequacy of these recommendations for the specified natural stone paving material selected.

Movement

- Expansion Joint Location
 - Drains or other inset materials.
 - Embedded railing anchorages.
 - Walls from paving system.
 - Fixed elements (stairs).

Joint Filling Material

- Prevents Lateral Movement
- Allows for Accommodation of Minor Stone Size Variation
- Primary Water Ingress Barrier
- Completes Walking Surface
- Prevents Debris Accumulation in Joints

Joint Filling Material - Mortar

- Materials
- Sand
- Cementitious Binder
- Admixtures
- Water
- Proportioning
- Optimize Bond to Pavers
- Long-Term Durability
- Freeze-Thaw Resistance

Joint Filling Material - Mortar

Proportioning: MIA & TCNA

- · Controlled by Joint Width
- Increase Sand for Larger Joints

Material	Specification	Paving Joint Width			
Wateria	Specification	0-1/8" 1/8" -1/2" Over		Over 1/2"	
Cement	ASTM C 150, Type I or II	l Part	1 Part	1 part	
Sand	ASTM C 144	1 Part	2 Parts	3 Parts	
Lime	ASTM C 206 (Type S) or ASTM C 207 (Type S)	1/5 Part (Optional)		nal)	

Join	t Filling Material - Mor	tar				
 Proportioning: BIA (ASTM C270) Controlled by Strength 						
		Material Propo	tion by Volume			
		Type M	Type S			
Material	Specification	Compressive Strength (min. at 28 days): 2500 psi	Compressive Strength (min. at 28 days): 1800 psi			
Cement	ASTM C 150, Type I or II	1 Part	1 Part			
Sand	ASTM C 144	2-3/4 to 3-3/4 Parts	3-3/4 to 4-1/2 Parts			
Lime	ASTM C 206 (Type S) or ASTM C 207 (Type S)	1/4 Part	1/4 to 1/2 Parts			

Joint Filling Material - Sealant

- Silicone or Polyurethane
- ASTM D2203, "Standard Test Method for Staining from Sealants"
- "Halo" or "Picture Frame" Effect
- Changes in Formulation
- Primer Influence
- Cleaning

CONDITIONS TO AVOID

- Cracks/Discontinuities in Substrates
- Un-accommodated Volume Changes
- Irregular Joint Patterns
- Changes in Bearing, Depth
- Inadequate System Depth
- High Absorption Stone
- Improper Mortar Types
- Large Formats
- Long Spans

STONE CONSTRUCTION - SUMMARY

It's Complicated...

...use common sense as your guide, and do your homework.

• It lasts...

...we have been building with stone for thousands of years, and will continue, despite its challenges.

- It's natural...
 ...which is both a blessing and a curse.
- It's handsome...

...nothing looks better than a well executed stone building.

